Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
DifferenceRoot
  • See Also
    • DifferenceRootReduce
    • DifferentialRoot
    • RSolve
    • RecurrenceTable
    • LinearRecurrence
    • FunctionExpand
  • Related Guides
    • Discrete Calculus
    • Inverse Functions
    • Recurrence and Sum Functions
    • Integer Sequences
  • Tech Notes
    • Formal Symbols
    • See Also
      • DifferenceRootReduce
      • DifferentialRoot
      • RSolve
      • RecurrenceTable
      • LinearRecurrence
      • FunctionExpand
    • Related Guides
      • Discrete Calculus
      • Inverse Functions
      • Recurrence and Sum Functions
      • Integer Sequences
    • Tech Notes
      • Formal Symbols

DifferenceRoot[lde][k]

gives the holonomic sequence , specified by the linear difference equation lde[h,k].

DifferenceRoot[lde]

represents a pure holonomic sequence .

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Visualization  
Function Properties  
Special Sequences  
Differentiation  
Generalizations & Extensions  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Tech Notes
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • DifferenceRootReduce
    • DifferentialRoot
    • RSolve
    • RecurrenceTable
    • LinearRecurrence
    • FunctionExpand
  • Related Guides
    • Discrete Calculus
    • Inverse Functions
    • Recurrence and Sum Functions
    • Integer Sequences
  • Tech Notes
    • Formal Symbols
    • See Also
      • DifferenceRootReduce
      • DifferentialRoot
      • RSolve
      • RecurrenceTable
      • LinearRecurrence
      • FunctionExpand
    • Related Guides
      • Discrete Calculus
      • Inverse Functions
      • Recurrence and Sum Functions
      • Integer Sequences
    • Tech Notes
      • Formal Symbols

DifferenceRoot

DifferenceRoot[lde][k]

gives the holonomic sequence , specified by the linear difference equation lde[h,k].

DifferenceRoot[lde]

represents a pure holonomic sequence .

Details

  • Mathematical sequence, suitable for both symbolic and numerical manipulation; also known as holonomic sequence and P-recursive sequence.
  • The holonomic sequence defined by a DifferenceRoot function satisfies a holonomic difference equation with polynomial coefficients and initial values .
  • DifferenceRoot can be used like any other mathematical function.
  • FunctionExpand will attempt to convert DifferenceRoot functions in terms of special functions.
  • The sequences representable by DifferenceRoot include a large number of special sequences.
  • DifferenceRootReduce can convert many special sequences to DifferenceRoot sequences.
  • Holonomic sequences are closed under many operations, including:
  • , constant multiple, integer power
    , sums and products
    discrete convolution
    , , discrete shift, difference and sum
  • DifferenceRoot is automatically generated by functions such as Sum, RSolve and SeriesCoefficient.
  • Functions such as Sum, DifferenceDelta and GeneratingFunction work with DifferenceRoot inputs.
  • DifferenceRoot automatically threads over lists.

Examples

open all close all

Basic Examples  (2)

Define f to be the Fibonacci sequence:

Calculate the 20th Fibonacci number:

Compare the result with the built-in Fibonacci function:

Plot the first 10 Fibonacci numbers:

Calculate the sum of the first 30 Fibonacci numbers:

Find the generating function for the Fibonacci sequence:

Find the first 10 coefficients of the series expansion of :

Compare the result with the first 10 Fibonacci numbers:

Several functions can produce closed-form answers by using DifferenceRoot functions:

Scope  (21)

Numerical Evaluation  (6)

Define a DifferenceRoot sequence:

Evaluate at an arbitrary point:

Evaluate sequences with inexact coefficients:

Evaluate sequences with complex coefficients:

Evaluate sequences with parameters:

Evaluate sequences for negative terms:

DifferenceRoot threads elementwise over lists and matrices:

Visualization  (2)

Define a DifferenceRoot object called f:

Plot the first 10 terms of f:

Plot the first 25 terms of f using ListLinePlot:

Define a DifferenceRoot object f where the parameter a may be arbitrary:

Plot the sequence f for different values of the parameter a:

Function Properties  (9)

DifferenceRoot works with linear recurrences:

DifferenceRoot transforms recurrences with rational coefficients to ones with polynomial coefficients:

Inhomogeneous recurrences are transformed to higher-order homogeneous recurrences:

DifferenceRoot works on inhomogeneous equations with polynomial forcing functions:

Calculate the first 10 terms of this sequence:

DifferenceRoot works with multiple initial values:

Difference function for a series with symbolic components:

Find the leading asymptotic term of a DifferenceRoot object as approaches Infinity:

Obtain the same result using AsymptoticRSolveValue:

DifferenceRoot can take parameters:

Calculate the first 5 terms of this sequence for symbolic a:

Specify the parameter a:

Plot the sequence f for different values of the parameter a:

If possible, DifferenceRoot reduces to built-in functions:

Special Sequences  (3)

Difference equation form of Fibonacci:

Difference equation form of LucasL:

Difference equation form of HarmonicNumber:

Differentiation  (1)

Generate a parametric sequence corresponding to ChebyshevT polynomials:

Calculate the derivative of this sequence wrt to parameter:

Extract the difference equation that the derivatives of ChebyshevT obey:

Check the equality of the first 10 terms of this sequence with the direct derivatives of ChebyshevT:

Generalizations & Extensions  (2)

Equations with holonomic constant terms are automatically lifted to polynomial coefficients:

The following function is not defined for n>0:

Add the initial value y[1]=2 so that it is defined for all n:

Applications  (6)

Use DifferenceRoot to get the difference equation form of HarmonicNumber:

Reduce combinations of special sequences to their DifferenceRoot forms:

Use f like any sequence:

Define the Pell number sequence using DifferenceRoot:

Use it like any sequence:

Prove properties of Pell numbers:

Closed-form formula:

A summation identity:

Reduce combinations of special sequences to a DifferenceRoot function:

Plot it:

Generate a function for which the Taylor expansion is the given DifferenceRoot object:

Verify the result:

Generate the DifferenceRoot object that generates the BesselJ functions:

Properties & Relations  (14)

Use DifferenceRootReduce to generate DifferenceRoot objects:

Get the corresponding ordinary difference equation:

Use the equation to verify solutions:

Sum of a DifferenceRoot object:

GeneratingFunction may generate a DifferentialRoot object from a holonomic sequence:

For specific cases, GeneratingFunction may give an explicit function:

Find the exponential generating function of a DifferenceRoot object:

The solution of a difference equation may be a DifferenceRoot object:

A result from Sum may be a DifferenceRoot object:

Coefficients in the expansion of a function may be given as a DifferenceRoot object:

The FindSequenceFunction result may be a DifferenceRoot object:

FunctionExpand attempts to generate simpler expressions for DifferenceRoot:

FunctionExpand attempts to generate simpler expressions for parametric sequences:

Define f to be some holonomic sequence:

Compare the result with the output of the RecurrenceTable:

DiscreteShift takes a DifferenceRoot function and generates a shifted sequence:

DifferenceDelta takes a DifferenceRoot function as an input:

Simplify this expression:

Possible Issues  (2)

DifferenceRoot evaluates only linear difference sequences with polynomial coefficients:

DifferenceRoot evaluates only integer terms:

Neat Examples  (1)

Define a DifferenceRoot function:

Plot it:

Prove identities:

Attempt to expand into less general functions:

See Also

DifferenceRootReduce  DifferentialRoot  RSolve  RecurrenceTable  LinearRecurrence  FunctionExpand

Function Repository: FindLinearRecurrenceEquations

Tech Notes

    ▪
  • Formal Symbols

Related Guides

    ▪
  • Discrete Calculus
  • ▪
  • Inverse Functions
  • ▪
  • Recurrence and Sum Functions
  • ▪
  • Integer Sequences

History

Introduced in 2008 (7.0) | Updated in 2020 (12.2)

Wolfram Research (2008), DifferenceRoot, Wolfram Language function, https://reference.wolfram.com/language/ref/DifferenceRoot.html (updated 2020).

Text

Wolfram Research (2008), DifferenceRoot, Wolfram Language function, https://reference.wolfram.com/language/ref/DifferenceRoot.html (updated 2020).

CMS

Wolfram Language. 2008. "DifferenceRoot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/ref/DifferenceRoot.html.

APA

Wolfram Language. (2008). DifferenceRoot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DifferenceRoot.html

BibTeX

@misc{reference.wolfram_2025_differenceroot, author="Wolfram Research", title="{DifferenceRoot}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/DifferenceRoot.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_differenceroot, organization={Wolfram Research}, title={DifferenceRoot}, year={2020}, url={https://reference.wolfram.com/language/ref/DifferenceRoot.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English