Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
FindSequenceFunction
  • See Also
    • FindLinearRecurrence
    • FindRepeat
    • FindTransientRepeat
    • FindGeneratingFunction
    • Interpolation
    • InterpolatingPolynomial
    • RSolve
    • Rationalize
    • RootApproximant
    • DifferenceRoot
    • FindFormula
    • AsymptoticRSolveValue
    • AsymptoticSum
  • Related Guides
    • Discrete Calculus
    • Recurrence and Sum Functions
    • Discrete Mathematics
    • Computational Systems
    • Number Recognition
    • Integer Sequences
    • Mathematical Data
    • Supervised Machine Learning
    • See Also
      • FindLinearRecurrence
      • FindRepeat
      • FindTransientRepeat
      • FindGeneratingFunction
      • Interpolation
      • InterpolatingPolynomial
      • RSolve
      • Rationalize
      • RootApproximant
      • DifferenceRoot
      • FindFormula
      • AsymptoticRSolveValue
      • AsymptoticSum
    • Related Guides
      • Discrete Calculus
      • Recurrence and Sum Functions
      • Discrete Mathematics
      • Computational Systems
      • Number Recognition
      • Integer Sequences
      • Mathematical Data
      • Supervised Machine Learning

FindSequenceFunction[{a1,a2,a3,…}]

attempts to find a simple function that yields the sequence an when given successive integer arguments.

FindSequenceFunction[{{n1,a1},{n2,a2},…}]

attempts to find a simple function that yields ai when given argument ni.

FindSequenceFunction[n1a1,n2a2,…]

gives a function that yields ai when given argument ni.

FindSequenceFunction[{n1a1,n2a2,…}]

gives a function that yields ai when given argument ni.

FindSequenceFunction[list,n]

gives the function applied to n.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Generalizations & Extensions  
Applications  
Properties & Relations  
See Also
Related Guides
Related Links
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • FindLinearRecurrence
    • FindRepeat
    • FindTransientRepeat
    • FindGeneratingFunction
    • Interpolation
    • InterpolatingPolynomial
    • RSolve
    • Rationalize
    • RootApproximant
    • DifferenceRoot
    • FindFormula
    • AsymptoticRSolveValue
    • AsymptoticSum
  • Related Guides
    • Discrete Calculus
    • Recurrence and Sum Functions
    • Discrete Mathematics
    • Computational Systems
    • Number Recognition
    • Integer Sequences
    • Mathematical Data
    • Supervised Machine Learning
    • See Also
      • FindLinearRecurrence
      • FindRepeat
      • FindTransientRepeat
      • FindGeneratingFunction
      • Interpolation
      • InterpolatingPolynomial
      • RSolve
      • Rationalize
      • RootApproximant
      • DifferenceRoot
      • FindFormula
      • AsymptoticRSolveValue
      • AsymptoticSum
    • Related Guides
      • Discrete Calculus
      • Recurrence and Sum Functions
      • Discrete Mathematics
      • Computational Systems
      • Number Recognition
      • Integer Sequences
      • Mathematical Data
      • Supervised Machine Learning

FindSequenceFunction

FindSequenceFunction[{a1,a2,a3,…}]

attempts to find a simple function that yields the sequence an when given successive integer arguments.

FindSequenceFunction[{{n1,a1},{n2,a2},…}]

attempts to find a simple function that yields ai when given argument ni.

FindSequenceFunction[n1a1,n2a2,…]

gives a function that yields ai when given argument ni.

FindSequenceFunction[{n1a1,n2a2,…}]

gives a function that yields ai when given argument ni.

FindSequenceFunction[list,n]

gives the function applied to n.

Details and Options

  • The sequence elements an can be either exact numbers or symbolic expressions.
  • FindSequenceFunction finds results in terms of a wide range of integer functions, as well as implicit solutions to difference equations represented by DifferenceRoot.
  • If FindSequenceFunction cannot find a simple function that yields the specified sequence, it returns unevaluated.
  • The following options can be used:
  • FunctionSpaceAutomaticwhere to look for candidate simple functions
    MethodAutomaticmethod to use
    TimeConstraint10how many seconds to search a particular function space or perform a transformation
    ValidationLengthAutomaticsequence length used to validate a candidate function found
  • FindSequenceFunction[list] by default uses earlier elements in list to find candidate simple functions, then validates the functions by looking at later elements.
  • FindSequenceFunction[list] only returns functions that correctly reproduce all elements of list.

Examples

open all close all

Basic Examples  (2)

Find a sequence that yields the sequence 1,1,2,3,5,8,13,…:

Find a function that yields the given sequence as a subsequence:

Check the even subsequence:

Scope  (5)

Periodic sequences:

Polynomial functions:

Rational functions:

Hypergeometric terms:

Recurrence equations:

Generalizations & Extensions  (1)

FindSequenceFunction works on arbitrary exact numbers or symbolic expressions:

Applications  (6)

Find formulas for complex sequences:

Use additional values to validate the result:

Find a closed form for a sequence of definite integrals:

Find a closed form for the number of 0,1 sequences of length containing two adjacent 1s:

Generate a sequence from a power series expansion:

Find its formula:

Use SeriesCoefficient to find an alternative formula:

FindSequenceFunction assumes that sequences start with index 1:

Compare the result:

Compute a finite number of Fourier coefficients:

Find the formula:

Use a FourierCoefficient directly:

Verify the consistency of formulas:

Construct the Cantor set by starting with a {0,1} interval and removing the middle third of each interval in each step:

Some steps:

Find the length of the region:

Find a formula for the sequence of lengths using FindSequenceFunction:

Properties & Relations  (2)

Sum, Product, and other general discrete functions may be used:

Find the generating function of a sequence:

Use FindGeneratingFunction:

See Also

FindLinearRecurrence  FindRepeat  FindTransientRepeat  FindGeneratingFunction  Interpolation  InterpolatingPolynomial  RSolve  Rationalize  RootApproximant  DifferenceRoot  FindFormula  AsymptoticRSolveValue  AsymptoticSum

Function Repository: SequenceToSum  OEISSequenceData

Related Guides

    ▪
  • Discrete Calculus
  • ▪
  • Recurrence and Sum Functions
  • ▪
  • Discrete Mathematics
  • ▪
  • Computational Systems
  • ▪
  • Number Recognition
  • ▪
  • Integer Sequences
  • ▪
  • Mathematical Data
  • ▪
  • Supervised Machine Learning

Related Links

  • MathWorld

History

Introduced in 2008 (7.0) | Updated in 2015 (10.1)

Wolfram Research (2008), FindSequenceFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/FindSequenceFunction.html (updated 2015).

Text

Wolfram Research (2008), FindSequenceFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/FindSequenceFunction.html (updated 2015).

CMS

Wolfram Language. 2008. "FindSequenceFunction." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/FindSequenceFunction.html.

APA

Wolfram Language. (2008). FindSequenceFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindSequenceFunction.html

BibTeX

@misc{reference.wolfram_2025_findsequencefunction, author="Wolfram Research", title="{FindSequenceFunction}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/FindSequenceFunction.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_findsequencefunction, organization={Wolfram Research}, title={FindSequenceFunction}, year={2015}, url={https://reference.wolfram.com/language/ref/FindSequenceFunction.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English