Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
RecurrenceTable
  • See Also
    • RSolve
    • Table
    • FindInstance
    • NDSolve
    • RecurrenceFilter
    • AsymptoticRSolveValue
    • RFixedPoints
    • RStabilityConditions
  • Related Guides
    • Discrete Calculus
    • Recurrence and Sum Functions
    • Iterated Maps & Fractals
    • Equation Solving
    • Integer Sequences
    • Discrete Mathematics
    • Scientific Models
    • See Also
      • RSolve
      • Table
      • FindInstance
      • NDSolve
      • RecurrenceFilter
      • AsymptoticRSolveValue
      • RFixedPoints
      • RStabilityConditions
    • Related Guides
      • Discrete Calculus
      • Recurrence and Sum Functions
      • Iterated Maps & Fractals
      • Equation Solving
      • Integer Sequences
      • Discrete Mathematics
      • Scientific Models

RecurrenceTable[eqns,expr,{n,nmax}]

generates a list of values of expr for successive n based on solving the recurrence equations eqns.

RecurrenceTable[eqns,expr,nspec]

generates a list of values of expr over the range of n values specified by nspec.

RecurrenceTable[eqns,expr,{n1,…},{n2,…},…]

generates an array of values of expr for successive n1, n2, … .

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Ordinary Difference Equations  
Partial Difference Equations  
Difference-Algebraic Equations  
System Models  
Generalizations & Extensions  
Options  
DependentVariables  
Method  
WorkingPrecision  
Applications  
Logistic Equations  
Random Number Generation  
Rabbit Fractal  
Bifurcation Diagram of the Logistic Map  
Compare Numerical Methods for ODEs  
Standard Map  
Properties & Relations  
Neat Examples  
See Also
Related Guides
Related Links
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • RSolve
    • Table
    • FindInstance
    • NDSolve
    • RecurrenceFilter
    • AsymptoticRSolveValue
    • RFixedPoints
    • RStabilityConditions
  • Related Guides
    • Discrete Calculus
    • Recurrence and Sum Functions
    • Iterated Maps & Fractals
    • Equation Solving
    • Integer Sequences
    • Discrete Mathematics
    • Scientific Models
    • See Also
      • RSolve
      • Table
      • FindInstance
      • NDSolve
      • RecurrenceFilter
      • AsymptoticRSolveValue
      • RFixedPoints
      • RStabilityConditions
    • Related Guides
      • Discrete Calculus
      • Recurrence and Sum Functions
      • Iterated Maps & Fractals
      • Equation Solving
      • Integer Sequences
      • Discrete Mathematics
      • Scientific Models

RecurrenceTable

RecurrenceTable[eqns,expr,{n,nmax}]

generates a list of values of expr for successive n based on solving the recurrence equations eqns.

RecurrenceTable[eqns,expr,nspec]

generates a list of values of expr over the range of n values specified by nspec.

RecurrenceTable[eqns,expr,{n1,…},{n2,…},…]

generates an array of values of expr for successive n1, n2, … .

Details and Options

  • The eqns must be recurrence equations whose solutions over the range specified can be determined completely from the initial or boundary values given.
  • The eqns can involve objects of the form a[n+i] where i is any fixed integer.
  • The range specification nspec can have any of the forms used in Table.
  • The following options can be given:
  • DependentVariables Automaticthe list of all dependent variables
    Method Automaticmethod to use
    WorkingPrecision Automaticprecision used in internal computations
  • With DependentVariables->Automatic, RecurrenceTable attempts to determine the dependent variables by analyzing the equations given.
  • With WorkingPrecision->Automatic, results for exact inputs are computed exactly, and for inexact inputs, the precision to use is determined adaptively at each iteration.
  • With WorkingPrecision->p, a fixed precision p is used for all iterations.
  • RecurrenceTable[u[t]sys,resp,{t,tmin,tmax}] can be used for solving discrete-time models, where sys can be a TransferFunctionModel or a StateSpaceModel and the response function resp can be one of the following: »
  • "StateResponse"state response of sys to the input
    "OutputResponse"output response of sys to the input

Examples

open all close all

Basic Examples  (4)

Solve an initial-value problem for a first-order difference equation:

Find the first few Fibonacci numbers:

Study the evolution for a nonlinear map of the plane:

Compute a table of Stirling numbers of the first kind:

Scope  (12)

Ordinary Difference Equations  (6)

Linear ordinary difference equation with exact coefficients:

Nonlinear ordinary difference equation with inexact coefficients:

System of ordinary difference equation with symbolic initial conditions:

Return only the values of x:

Iterate using exact arithmetic:

Iterate using adaptive arithmetic starting with precision 20:

The precision decreases with each iteration:

Iterate using fixed 20-digit-precision arithmetic:

Iterate using machine arithmetic:

Iterate several values at once by giving a vector initial condition:

Iterate a matrix recurrence:

Partial Difference Equations  (2)

Use the partial recurrence equations for binomial coefficients:

Procedural solution for a nonlinear partial difference equation:

Difference-Algebraic Equations  (1)

Solve a linear difference-algebraic equation with constant coefficients:

Compare with the symbolic solution given by RSolve:

System Models  (3)

The state response and the output response of a state-space model to a sampled sinusoid:

The state response of a discrete-time system with initial conditions {1,-1}:

The output response of a two-input system:

Generalizations & Extensions  (3)

Generate a subset of values from a given range:

Get only the last value from an iteration:

This is faster than when all the values are saved:

Use a vector initial condition:

Options  (3)

DependentVariables  (1)

Use DependentVariables to specify the variables when you only want to save some of them:

Save only y:

Save both in order {y,x}:

Method  (1)

Use Method->{Compiled->False} to prevent the Wolfram Language compiler from being used:

Results differ due to arithmetic change from optimization:

WorkingPrecision  (1)

Use WorkingPrecision->MachinePrecision for the fastest iterations:

Use WorkingPrecision->p for slower, but higher-precision iterations:

Exact computations have no error, but may be very slow indeed:

Applications  (6)

Logistic Equations  (1)

Study the behavior of the logistic equation for different values of the parameter r:

Random Number Generation  (1)

Implement the Cliff random number generator:

The random numbers appear to be uniformly distributed:

Compare with the parameters for the uniform distribution:

Rabbit Fractal  (1)

Plot the Douady rabbit fractal:

Initial condition with 250 points in each direction on the rectangle with corners -1.3-1.3 ⅈ and 1.3+1.3 ⅈ:

Iterate starting from these initial conditions:

Use ArrayPlot to show the fractal:

Bifurcation Diagram of the Logistic Map  (1)

Find iterates from and of the map for 1000 values of :

Scale the iterates to be integers between 1 and and transpose so the rows correspond to :

Define a function that gives a rule based on the logarithm of counts of each value:

Make a sparse matrix based on applying Count to the iterates for each :

Use ArrayPlot to make the bifurcation diagram:

Compare Numerical Methods for ODEs  (1)

For , Euler's method is unconditionally unstable:

The symplectic Euler method is stable, but is very sensitive to initial conditions for large h:

Compare the methods for different vector fields with Manipulate:

Standard Map  (1)

Stretching and folding induced by the standard map for a line of initial conditions [more info]:

Properties & Relations  (3)

RSolve finds a symbolic solution for this difference equation:

RecurrenceTable generates a procedural solution for the same problem:

Use RecurrenceFilter to filter a signal:

Obtain the same result using RecurrenceTable:

Use RFixedPoints to find fixed points of a nonlinear recurrence equation:

Use RStabilityConditions to analyze the stability of the fixed points:

Solve the equation using RecurrenceTable:

Plot the solution:

Neat Examples  (1)

Visualize the smoothing of the initial data for the heat equation using the discretized version:

See Also

RSolve  Table  FindInstance  NDSolve  RecurrenceFilter  AsymptoticRSolveValue  RFixedPoints  RStabilityConditions

Related Guides

    ▪
  • Discrete Calculus
  • ▪
  • Recurrence and Sum Functions
  • ▪
  • Iterated Maps & Fractals
  • ▪
  • Equation Solving
  • ▪
  • Integer Sequences
  • ▪
  • Discrete Mathematics
  • ▪
  • Scientific Models

Related Links

  • MathWorld

History

Introduced in 2008 (7.0) | Updated in 2024 (14.0)

Wolfram Research (2008), RecurrenceTable, Wolfram Language function, https://reference.wolfram.com/language/ref/RecurrenceTable.html (updated 2024).

Text

Wolfram Research (2008), RecurrenceTable, Wolfram Language function, https://reference.wolfram.com/language/ref/RecurrenceTable.html (updated 2024).

CMS

Wolfram Language. 2008. "RecurrenceTable." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2024. https://reference.wolfram.com/language/ref/RecurrenceTable.html.

APA

Wolfram Language. (2008). RecurrenceTable. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RecurrenceTable.html

BibTeX

@misc{reference.wolfram_2025_recurrencetable, author="Wolfram Research", title="{RecurrenceTable}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/RecurrenceTable.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_recurrencetable, organization={Wolfram Research}, title={RecurrenceTable}, year={2024}, url={https://reference.wolfram.com/language/ref/RecurrenceTable.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English