Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
ProductDistribution
  • See Also
    • CopulaDistribution
    • UniformDistribution
    • Probability
    • Covariance
  • Related Guides
    • Derived Statistical Distributions
    • See Also
      • CopulaDistribution
      • UniformDistribution
      • Probability
      • Covariance
    • Related Guides
      • Derived Statistical Distributions

ProductDistribution[dist1,dist2,…]

represents the joint distribution with independent component distributions dist1, dist2, ….

Details
Details and Options Details and Options
Background & Context
Examples  
Basic Examples  
Scope  
Basic Uses  
Parametric Distributions  
Nonparametric Distributions  
Derived Distributions  
Applications  
Properties & Relations  
Neat Examples  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • CopulaDistribution
    • UniformDistribution
    • Probability
    • Covariance
  • Related Guides
    • Derived Statistical Distributions
    • See Also
      • CopulaDistribution
      • UniformDistribution
      • Probability
      • Covariance
    • Related Guides
      • Derived Statistical Distributions

ProductDistribution

ProductDistribution[dist1,dist2,…]

represents the joint distribution with independent component distributions dist1, dist2, ….

Details

  • The probability density for ProductDistribution[dist1,dist2,…] is given by where is the PDF of dist1, is the PDF of dist2, etc.
  • The notation {disti,n} indicates that disti is repeated n times.
  • The distributions disti can be any combination of univariate, multivariate, continuous, or discrete distributions.
  • ProductDistribution can be used with such functions as Mean, CDF, and RandomVariate.

Background & Context

  • ProductDistribution[dist1,dist2,…,distn] represents a multivariate statistical distribution whose ^(th) marginal distribution (MarginalDistribution) is precisely distj, and for which the component distributions dist1,dist2,…,distn are independent. In particular, the probability density function (PDF) of a general product distribution ProductDistribution[dist1,dist2,…,distn] is precisely , where is the PDF of distj. While all product distributions share these properties, the characteristics and behavior of specific product distributions depend on their marginals dist1,dist2,…,distn.
  • The component distributions dist1,dist2,…,distn may be continuous or discrete, univariate or multivariate, and may consist of any and all combinations of standard named distributions (e.g. BinomialDistribution, NormalDistribution, HypergeometricDistribution, etc.) and modifications (via TransformedDistribution, CensoredDistribution, ProductDistribution, CopulaDistribution, etc.) thereof. Moreover, each component distribution distj may be either symbolic (e.g. NormalDistribution[μ,σ]) or numeric (e.g. NormalDistribution[0,1]), and the shorthand ProductDistribution[{dist1,k1},{dist2,k2},… ,{distn,kn}] may be used to indicate that the j^(th) marginal distj is repeated kj times.
  • A program for beginning a systematic study of product distributions was proposed in the 1940s. Despite work throughout the 1950s and early 1960s toward that end, the first thorough treatment of the topic was a 1966 paper by Springer and Thompson. Since then, methods have been improved upon so that products of specially defined (e.g. piecewise) probability distributions can be studied both theoretically and algorithmically, and from a practical standpoint, product distributions have proven to be of tantamount importance in fields such as machine learning and finance. Product distributions have also been studied extensively using Monte Carlo theory and other numerical methods.
  • Many relationships exist between ProductDistribution and various other distributions. ProductDistribution is a special case of CopulaDistribution in the sense that ProductDistribution[dist1,dist2,…,distn] is equivalent to CopulaDistribution["Product",{dist1,dist2,…,distn}]. KDistribution is defined to be a product of variates distributed according to GammaDistribution, the product of two instances of LogNormalDistribution is again LogNormalDistribution, and the product of BetaDistribution with GammaDistribution is again GammaDistribution. MultinormalDistribution (and hence BinormalDistribution) with a diagonal covariance matrix is also an example of ProductDistribution whose marginals are NormalDistribution.

Examples

open all close all

Basic Examples  (3)

Define a two-dimensional distribution for independent normal random variables:

Define a two-dimensional distribution for independent identically distributed components:

Define a multivariate distribution with continuous and discrete components:

Scope  (26)

Basic Uses  (7)

Define a product of two independent continuous distributions:

The PDF is the product of the component PDFs:

Product of discrete distributions:

The PDF is the product of the component PDFs:

Define a product distribution in which three components are repeated:

Probability density function for the four-dimensional product distribution:

Product distribution with both continuous and discrete components:

Draw a random sample from this distribution:

Estimate the distribution parameters for the components using the random sample:

Define a general product distribution with few repeated components:

Compare to a random sample:

Product of multivariate continuous distributions:

Probability density function:

Verify that the integral of the PDF is 1:

Product of multivariate discrete distributions:

Compute the variance of the distribution:

Compare with the values obtained by using a random sample:

Parametric Distributions  (6)

Create a bivariate normal distribution with independent components:

Probability density function:

Compare to BinormalDistribution:

Define a two-dimensional Laplace distribution:

Probability density function:

Mean and variance:

Define product distribution of independent PoissonDistribution:

Probability density function:

Covariance:

The MultivariatePoissonDistribution does not have independent components:

The assumptions:

Create the product distribution of two independent examples of StudentTDistribution:

Generate random sample:

Fit a MultivariateTDistribution:

Goodness-of-fit test:

Compute properties with symbolic parameters:

Distribution functions:

Special moments:

Moments with closed forms for symbolic order:

Other moments can be obtained numerically:

Generating functions:

Find marginals of MultinormalDistribution:

Find product distribution of the marginal distributions:

Probability density function of :

 is a MultinormalDistribution with a diagonal covariance matrix:

Nonparametric Distributions  (3)

Define the product of SmoothKernelDistribution:

Compare to the product of original distributions:

Create a sample from  and define SmoothKernelDistribution for this sample:

Compare all three distributions:

Define a product of EmpiricalDistribution:

Plot the probability density function and cumulative distribution function:

Define a product distribution with HistogramDistribution:

Probability density function:

Derived Distributions  (10)

Define a product with a CensoredDistribution:

MarginalDistribution chooses the components of ProductDistribution:

Compose product distribution from marginals:

Probability density function:

It is the same as for binormal distribution with no correlation:

The components of product distribution are assumed to be independent, hence the original distribution cannot be recovered when is not zero:

Create the product distribution from a MixtureDistribution:

Probability density function:

Mean and variance:

Find the product distribution of minimum and maximum OrderDistribution:

Probability density function:

Plot density function for fixed :

Define a product distribution of a ParameterMixtureDistribution:

Product distribution is used as an input for a TransformedDistribution:

Find the product distribution of a TransformedDistribution:

Probability density function:

Find the product distribution of a TruncatedDistribution:

Variance depends on the truncation interval:

Compare the PDF to the product of distributions that are not truncated:

Find the product distribution of a TruncatedDistribution:

Compare the PDF with the product distribution of two Poisson distributions:

Truncation influences the direction and value of skewness:

Product of QuantityDistribution evaluates to QuantityDistribution:

Find moments:

Convert the distribution to kilograms:

Applications  (8)

Generate an uncorrelated sample from a binormal distribution:

The sample is slightly correlated, even though the original distribution is not:

Estimate the distribution from data:

The estimated distribution has correlation similar to the sample:

Force independent estimates by estimating the marginal distributions:

Create product distribution:

The resulting distribution has no correlation:

Two people try to meet at a certain place between 5pm and 5:30pm. Each person arrives at a time uniformly distributed in the time interval independently of each other and stays for five minutes. Find the probability that they meet:

Show the region for the overlapping event:

Two six-sided dice are thrown independently of each other. Find the density of the sum:

Find the density of the sum when three dice are thrown independently:

Find the probability that the values lie outside a circle of radius 7, in a square of side 14:

Generate random samples of size 100 from a standard normal distribution:

The sampling distribution for the mean is given by NormalDistribution[0,1/10]:

A lottery sells 10 tickets for $1 per ticket. Each time there is only one winning ticket. A gambler has $5 to spend. Find his probability of winning if he buys 5 tickets in 5 different lotteries:

His probability of winning is greater if he buys 5 tickets in the same lottery:

The waiting times for buying tickets and for buying popcorn at a movie theater are independent and they both follow the exponential distribution. The average waiting time for buying a ticket is 10 minutes and the average waiting time for buying popcorn is 5 minutes. Find the probability that a moviegoer waits for a total of less than 25 minutes before taking his or her seat:

Obtain the numerical value of the probability directly:

A factory produces cylindrically shaped roller bearings. The diameters of the bearings are normally distributed with mean 5 cm and standard deviation 0.01 cm. The lengths of the bearings are normally distributed with mean 7 cm and standard deviation 0.01 cm. Assuming that the diameter and the length are independently distributed, find the probability that a bearing has either diameter or length that differs from the mean by more than 0.02 cm.

The joint distribution of the diameters and lengths is given by:

Properties & Relations  (7)

Marginal distributions are simply related to the component distributions:

One-dimensional marginal distributions:

Two-dimensional marginal distributions:

A product copula represents a product distribution:

The PDF is the product of the PDFs of the component distributions:

The CDF is the product of the CDFs of the component distributions:

The generating functions are products of generating functions of component distributions:

The components of the mean vector are the means of the component distributions:

Similarly for the variance:

A MultinormalDistribution is a product distribution when the covariance matrix is diagonal:

Neat Examples  (1)

Iso-probability density levels for a three-dimensional product distribution:

See Also

CopulaDistribution  UniformDistribution  Probability  Covariance

Function Repository: ConditionalProductDistribution

Related Guides

    ▪
  • Derived Statistical Distributions

History

Introduced in 2010 (8.0) | Updated in 2016 (10.4)

Wolfram Research (2010), ProductDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/ProductDistribution.html (updated 2016).

Text

Wolfram Research (2010), ProductDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/ProductDistribution.html (updated 2016).

CMS

Wolfram Language. 2010. "ProductDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/ProductDistribution.html.

APA

Wolfram Language. (2010). ProductDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ProductDistribution.html

BibTeX

@misc{reference.wolfram_2025_productdistribution, author="Wolfram Research", title="{ProductDistribution}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/ProductDistribution.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_productdistribution, organization={Wolfram Research}, title={ProductDistribution}, year={2016}, url={https://reference.wolfram.com/language/ref/ProductDistribution.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English