Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
MixtureDistribution
  • See Also
    • KernelMixtureDistribution
    • ParameterMixtureDistribution
    • RandomSample
    • RandomChoice
  • Related Guides
    • Derived Statistical Distributions
    • Distributions in Reliability Analysis
    • Reliability
    • Probability & Statistics with Quantities
    • Nonparametric Statistical Distributions
    • See Also
      • KernelMixtureDistribution
      • ParameterMixtureDistribution
      • RandomSample
      • RandomChoice
    • Related Guides
      • Derived Statistical Distributions
      • Distributions in Reliability Analysis
      • Reliability
      • Probability & Statistics with Quantities
      • Nonparametric Statistical Distributions

MixtureDistribution[{w1,…,wn},{dist1,…,distn}]

represents a mixture distribution whose CDF is given as a sum of the CDFs of the component distributions disti, each with weight wi.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Basic Uses  
Parametric Distributions  
Nonparametric Distributions  
Derived Distributions  
Automatic Simplifications  
Applications  
Properties & Relations  
Neat Examples  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • KernelMixtureDistribution
    • ParameterMixtureDistribution
    • RandomSample
    • RandomChoice
  • Related Guides
    • Derived Statistical Distributions
    • Distributions in Reliability Analysis
    • Reliability
    • Probability & Statistics with Quantities
    • Nonparametric Statistical Distributions
    • See Also
      • KernelMixtureDistribution
      • ParameterMixtureDistribution
      • RandomSample
      • RandomChoice
    • Related Guides
      • Derived Statistical Distributions
      • Distributions in Reliability Analysis
      • Reliability
      • Probability & Statistics with Quantities
      • Nonparametric Statistical Distributions

MixtureDistribution

MixtureDistribution[{w1,…,wn},{dist1,…,distn}]

represents a mixture distribution whose CDF is given as a sum of the CDFs of the component distributions disti, each with weight wi.

Details

  • The cumulative distribution function for value is proportional to , where is the CDF for disti.
  • The distributions disti need to be all continuous or all discrete, and have the same dimensionality.
  • The weights wi can be any non-negative real numbers.
  • MixtureDistribution can be used with such functions as Mean, CDF, and RandomVariate, etc.

Examples

open all close all

Basic Examples  (3)

Define a mixture of two continuous distributions:

Define a mixture of two discrete distributions:

Define a multivariate mixture:

Scope  (30)

Basic Uses  (10)

A mixture with numeric weights:

Cumulative distribution function:

A mixture with symbolic weights:

Probability density function:

The weights control the contribution by each distribution:

Two univariate continuous distributions:

The mixture combines the densities according to their weights:

Two bivariate continuous distributions:

The mixture combines the densities according to their weights:

Two univariate discrete distributions:

Probability density function:

Plot a density function for different weights:

Mean and variance:

Two multivariate discrete distributions:

Probability density function:

Generate random numbers:

Several univariate continuous distributions:

Moments:

Factorial moments:

Central moments:

Cumulants:

Several univariate discrete distributions:

Generating functions:

Estimate weights in a mixture:

Parametric Distributions  (5)

Define a mixture of two different continuous distributions:

Probability density function:

Hazard function:

In the limit the exponential distribution component dominates:

Define a mixture of two distributions with different supports:

Probability density function for a few values of the weight:

Define a mixture of two different univariate discrete distributions:

Probability density function:

Cumulative distribution function:

Moments can be obtained numerically:

Define a mixture of two different multivariate discrete distributions:

Probability density function:

Covariance:

Define a mixture distribution of multivariate uniform distributions:

Cumulative distribution function:

Nonparametric Distributions  (3)

Define a mixture with SmoothKernelDistribution:

The mixture combines the densities according to their weights:

Define a mixture with EmpiricalDistribution:

The mixture combines the cumulative distribution functions according to their weights:

Plot the cumulative distribution function:

Define a mixture with HistogramDistribution:

The mixture combines the densities according to their weights:

Derived Distributions  (10)

Define a mixture distribution with components given by MixtureDistribution:

The PDF is piecewise continuous:

The mean is a convex combination of the means of the components:

Find which components cause the mean of the mixture to be indeterminate:

Find a mixture distribution of the OrderDistribution of the minimum and the maximum:

Compare the probability density functions:

The mean of the mixture distribution:

Compare to the average of the means of order distributions:

Find the mixture distribution of a TruncatedDistribution:

The probability density function is not continuous:

The mean can be computed explicitly:

Find the probability density function of the mixture distribution with a ProductDistribution:

Define a mixture distribution with a TransformedDistribution:

Probability density function:

Define a mixture distribution of a MarginalDistribution:

Characteristic function:

Define a mixture with a CensoredDistribution:

Probability density function:

A mixture with a ParameterMixtureDistribution:

PDFs of scaled mixture components and mixture distribution:

Define a mixture distribution with a CopulaDistribution:

Mixture of compatible QuantityDistribution evaluates to QuantityDistribution:

Evaluate the mean:

Plot the PDF:

Automatic Simplifications  (2)

One component mixture simplifies to the input distribution:

A mixture with zero weights will reduce the number of input distributions:

A mixture with one zero weight will return unevaluated:

Applications  (7)

Find the percentage of values between and :

Between and :

Package it up as a function using NProbability:

Determine the maximal variance of a mixture:

The heights of females in the United States follow normal distribution with mean 64 inches and standard deviation of 2 inches, while the heights of males in the United States follow normal distribution with mean 70 inches and standard deviation of 2 inches. If the population ratio of males to females is 1.1, then the heights of the whole population have the following bimodal distribution:

Simulate a typical distribution of heights in a town of population 100:

Find the probability that a person is at least 73 inches tall:

A binary transmission is sent with 0 coded as a voltage signal and 1 as a voltage signal. 1 is sent with probability but the signal is corrupted by white noise. Find the PDF of the received signal:

Simulate transmission at the receiver for p=0.4 and v=1:

To distinguish between the two signals, the voltage difference must be bigger:

MixtureDistribution can be used to create multimodal models:

The magnitudes of earthquakes in the United States in the selected years have two modes:

Find an estimated distribution from possible mixtures of two normal distributions:

Compare the histogram to the PDF of the estimated distribution:

Find the probability of an earthquake of magnitude 7 or higher:

Find the mean earthquake magnitude:

Simulate magnitudes of the next 30 earthquakes:

The average city and highway mileage for midsize cars follows a binormal distribution:

Show the distribution of city and highway mileage:

Assuming 65% of the driving is done in the city, the mileage follows a MixtureDistribution:

Find the average mileage:

Gaussian mixture model is commonly used for the purpose of image segmentation. Image is represented as an array of pixels. A pixel is a scalar (or vector) which shows the intensity (or color):

Visualize the distribution of pixel values via Histogram:

Fit the pixel values to a three-component Gaussian mixture with EstimatedDistribution:

Label each pixel with maximum a posterior probability (MAP) estimate:

Visualize the result:

Properties & Relations  (8)

A mixture with weights w is equivalent to one with weights w/Total[w]:

Compare PDFs:

The PDF of a mixture is a convex combination of the PDF of its components:

The CDF of a mixture is a convex combination of the CDF of its components:

The moments of a mixture are a convex combination of the moments of its components:

A moment of general order:

A ParameterMixtureDistribution with a discrete weight, assuming a finite number of values, can be represented as a mixture distribution:

Compare PDFs:

A ParameterMixtureDistribution with a discrete weight, assuming a countable number of values, can be approximated by a mixture distribution:

Compare approximations for different quantiles as cut-offs:

Approximating a ParameterMixtureDistribution with a continuous weight by a mixture distribution:

Compare PDFs:

A KernelMixtureDistribution is a MixtureDistribution derived from data:

Neat Examples  (3)

A mixture of two binormal distributions:

A variety of distributional shapes from Gaussian mixtures:

A multivariate Gaussian mixture:

See Also

KernelMixtureDistribution  ParameterMixtureDistribution  RandomSample  RandomChoice

Function Repository: MixtureCategoricalDistribution

Related Guides

    ▪
  • Derived Statistical Distributions
  • ▪
  • Distributions in Reliability Analysis
  • ▪
  • Reliability
  • ▪
  • Probability & Statistics with Quantities
  • ▪
  • Nonparametric Statistical Distributions

History

Introduced in 2010 (8.0) | Updated in 2016 (10.4)

Wolfram Research (2010), MixtureDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/MixtureDistribution.html (updated 2016).

Text

Wolfram Research (2010), MixtureDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/MixtureDistribution.html (updated 2016).

CMS

Wolfram Language. 2010. "MixtureDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/MixtureDistribution.html.

APA

Wolfram Language. (2010). MixtureDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MixtureDistribution.html

BibTeX

@misc{reference.wolfram_2025_mixturedistribution, author="Wolfram Research", title="{MixtureDistribution}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/MixtureDistribution.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_mixturedistribution, organization={Wolfram Research}, title={MixtureDistribution}, year={2016}, url={https://reference.wolfram.com/language/ref/MixtureDistribution.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English