Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
Minimize
  • See Also
    • MinValue
    • ArgMin
    • Maximize
    • NMinimize
    • FindMinimum
    • Min
    • MinimalBy
    • D
    • FindInstance
    • LeastSquares
    • RegionDistance
  • Related Guides
    • Optimization
    • Discrete Mathematics
    • Solvers over Regions
    • Discrete Calculus
    • Calculus
    • Graph Programming
    • Symbolic Vectors, Matrices and Arrays
    • Boolean Computation
    • Finite Mathematics
    • Solid Geometry
    • Plane Geometry
    • Convex Optimization
    • Geometric Computation
    • Polygons
    • Scientific Models
    • Polyhedra
  • Tech Notes
    • Symbolic Mathematics: Basic Operations
    • Inequalities
    • Minimization and Maximization
    • Constrained Optimization
    • Unconstrained Optimization
    • Implementation notes: Algebra and Calculus
    • See Also
      • MinValue
      • ArgMin
      • Maximize
      • NMinimize
      • FindMinimum
      • Min
      • MinimalBy
      • D
      • FindInstance
      • LeastSquares
      • RegionDistance
    • Related Guides
      • Optimization
      • Discrete Mathematics
      • Solvers over Regions
      • Discrete Calculus
      • Calculus
      • Graph Programming
      • Symbolic Vectors, Matrices and Arrays
      • Boolean Computation
      • Finite Mathematics
      • Solid Geometry
      • Plane Geometry
      • Convex Optimization
      • Geometric Computation
      • Polygons
      • Scientific Models
      • Polyhedra
    • Tech Notes
      • Symbolic Mathematics: Basic Operations
      • Inequalities
      • Minimization and Maximization
      • Constrained Optimization
      • Unconstrained Optimization
      • Implementation notes: Algebra and Calculus

Minimize[f,x]

minimizes f symbolically with respect to x.

Minimize[f,{x,y,…}]

minimizes f symbolically with respect to x, y, ….

Minimize[{f,cons},{x,y,…}]

minimizes f symbolically subject to the constraints cons.

Minimize[…,x∈rdom]

constrains x to be in the region or domain rdom.

Minimize[…,…,dom]

constrains variables to the domain dom, typically Reals or Integers.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Basic Uses  
Univariate Problems  
Multivariate Problems  
Parametric Problems  
Optimization over Integers  
Optimization over Regions  
Options  
WorkingPrecision  
Applications  
Basic Applications  
Geometric Distances  
Geometric Centers  
Properties & Relations  
Possible Issues  
See Also
Tech Notes
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • MinValue
    • ArgMin
    • Maximize
    • NMinimize
    • FindMinimum
    • Min
    • MinimalBy
    • D
    • FindInstance
    • LeastSquares
    • RegionDistance
  • Related Guides
    • Optimization
    • Discrete Mathematics
    • Solvers over Regions
    • Discrete Calculus
    • Calculus
    • Graph Programming
    • Symbolic Vectors, Matrices and Arrays
    • Boolean Computation
    • Finite Mathematics
    • Solid Geometry
    • Plane Geometry
    • Convex Optimization
    • Geometric Computation
    • Polygons
    • Scientific Models
    • Polyhedra
  • Tech Notes
    • Symbolic Mathematics: Basic Operations
    • Inequalities
    • Minimization and Maximization
    • Constrained Optimization
    • Unconstrained Optimization
    • Implementation notes: Algebra and Calculus
    • See Also
      • MinValue
      • ArgMin
      • Maximize
      • NMinimize
      • FindMinimum
      • Min
      • MinimalBy
      • D
      • FindInstance
      • LeastSquares
      • RegionDistance
    • Related Guides
      • Optimization
      • Discrete Mathematics
      • Solvers over Regions
      • Discrete Calculus
      • Calculus
      • Graph Programming
      • Symbolic Vectors, Matrices and Arrays
      • Boolean Computation
      • Finite Mathematics
      • Solid Geometry
      • Plane Geometry
      • Convex Optimization
      • Geometric Computation
      • Polygons
      • Scientific Models
      • Polyhedra
    • Tech Notes
      • Symbolic Mathematics: Basic Operations
      • Inequalities
      • Minimization and Maximization
      • Constrained Optimization
      • Unconstrained Optimization
      • Implementation notes: Algebra and Calculus

Minimize

Minimize[f,x]

minimizes f symbolically with respect to x.

Minimize[f,{x,y,…}]

minimizes f symbolically with respect to x, y, ….

Minimize[{f,cons},{x,y,…}]

minimizes f symbolically subject to the constraints cons.

Minimize[…,x∈rdom]

constrains x to be in the region or domain rdom.

Minimize[…,…,dom]

constrains variables to the domain dom, typically Reals or Integers.

Details and Options

  • Minimize is also known as infimum, symbolic optimization and global optimization (GO).
  • Minimize finds the global minimum of f subject to the constraints given.
  • Minimize is typically used to find the smallest possible values given constraints. In different areas, this may be called the best strategy, best fit, best configuration and so on.
  • Minimize returns a list of the form {fmin,{x->xmin,y->ymin,…}}.
  • If f and cons are linear or polynomial, Minimize will always find a global minimum.
  • The constraints cons can be any logical combination of:
  • lhs==rhsequations
    lhs>rhs, lhs≥rhs, lhs<rhs, lhs≤rhsinequalities (LessEqual,…)
    lhsrhs, lhsrhs, lhsrhs, lhsrhsvector inequalities (VectorLessEqual,…)
    Exists[…], ForAll[…]quantified conditions
    {x,y,…}∈rdomregion or domain specification
  • Minimize[{f,cons},x∈rdom] is effectively equivalent to Minimize[{f,cons∧x∈rdom},x].
  • For x∈rdom, the different coordinates can be referred to using Indexed[x,i].
  • Possible domains rdom include:
  • Realsreal scalar variable
    Integersinteger scalar variable
    Vectors[n,dom]vector variable in
    Matrices[{m,n},dom]matrix variable in
    ℛvector variable restricted to the geometric region
  • By default, all variables are assumed to be real.
  • Minimize will return exact results if given exact input. With approximate input, it automatically calls NMinimize.
  • Minimize will return the following forms:
  • {fmin,{xxmin,…}}finite minimum
    {∞,{xIndeterminate,…}}infeasible, i.e. the constraint set is empty
    {-∞,{xxmin,…}}unbounded, i.e. the values of f can be arbitrarily small
  • If the minimum is achieved only infinitesimally outside the region defined by the constraints, or only asymptotically, Minimize will return the infimum and the closest specifiable point.
  • Even if the same minimum is achieved at several points, only one is returned.
  • N[Minimize[…]] calls NMinimize for optimization problems that cannot be solved symbolically.
  • Minimize[f,x,WorkingPrecision->n] uses n digits of precision while computing a result. »

Examples

open all close all

Basic Examples  (5)

Minimize a univariate function:

Minimize a multivariate function:

Minimize a function subject to constraints:

A minimization problem containing parameters:

Minimize a function over a geometric region:

Plot it:

Scope  (36)

Basic Uses  (7)

Minimize over the unconstrained reals:

Minimize subject to constraints :

Constraints may involve arbitrary logical combinations:

An unbounded problem:

An infeasible problem:

The infimum value may not be attained:

Use a vector variable and a vector inequality:

Univariate Problems  (7)

Unconstrained univariate polynomial minimization:

Constrained univariate polynomial minimization:

Exp-log functions:

Analytic functions over bounded constraints:

Periodic functions:

Combination of trigonometric functions with commensurable periods:

Combination of periodic functions with incommensurable periods:

Piecewise functions:

Unconstrained problems solvable using function property information:

Multivariate Problems  (9)

Multivariate linear constrained minimization:

Linear-fractional constrained minimization:

Unconstrained polynomial minimization:

Constrained polynomial optimization can always be solved:

The minimum value may not be attained:

The objective function may be unbounded:

There may be no points satisfying the constraints:

Quantified polynomial constraints:

Algebraic minimization:

Bounded transcendental minimization:

Piecewise minimization:

Convex minimization:

Minimize convex objective function such that is positive semidefinite and :

Plot the region and the minimizing point:

Parametric Problems  (4)

Parametric linear optimization:

The minimum value is a continuous function of parameters:

Parametric quadratic optimization:

The minimum value is a continuous function of parameters:

Unconstrained parametric polynomial minimization:

Constrained parametric polynomial minimization:

Optimization over Integers  (3)

Univariate problems:

Integer linear programming:

Polynomial minimization over the integers:

Optimization over Regions  (6)

Minimize over a region:

Plot it:

Find the minimum distance between two regions:

Plot it:

Find the minimum such that the triangle and ellipse still intersect:

Plot it:

Find the disk of minimum radius that contains the given three points:

Plot it:

Using Circumsphere gives the same result directly:

Use to specify that is a vector in :

Find the minimum distance between two regions:

Plot it:

Options  (1)

WorkingPrecision  (1)

Finding the exact solution takes a long time:

With WorkingPrecision->100, you get an exact minimum value, but it might be incorrect:

Applications  (10)

Basic Applications  (3)

Find the minimal perimeter among rectangles with a unit area:

Find the minimal perimeter among triangles with a unit area:

The minimal perimeter triangle is equilateral:

Find the distance to a parabola from a point on its axis:

Assuming a particular relationship between the and parameters:

Geometric Distances  (6)

The shortest distance of a point in a region ℛ to a given point p and a point q realizing the shortest distance is given by Minimize[EuclideanDistance[p,q],q∈ℛ]. Find the shortest distance and the nearest point to {1,1} in the unit Disk[]:

Plot it:

Find the shortest distance and the nearest point to {1,3/4} in the standard unit simplex Simplex[2]:

Plot it:

Find the shortest distance and the nearest point to {1,1,1} in the standard unit sphere Sphere[]:

Plot it:

Find the shortest distance and the nearest point to {-1/3,1/3,1/3} in the standard unit simplex Simplex[3]:

Plot it:

The nearest points p∈ and q∈ and their distance can be found through Minimize[EuclideanDistance[p,q],{p∈,q∈}]. Find the nearest points in Disk[{0,0}] and Rectangle[{3,3}] and the distance between them:

Plot it:

Find the nearest points in Line[{{0,0,0},{1,1,1}}] and Ball[{5,5,0},1] and the distance between them:

Plot it:

Geometric Centers  (1)

If ℛ⊆n is a region that is full dimensional, then the Chebyshev center is the center of the largest inscribed ball of ℛ. The center and the radius of the largest inscribed ball of ℛ can be found through Minimize[SignedRegionDistance[ℛ,p], p∈ℛ]. Find the Chebyshev center and the radius of the largest inscribed ball for Rectangle[]:

Find the Chebyshev center and the radius of the largest inscribed ball for Triangle[]:

Properties & Relations  (6)

Minimize gives an exact global minimum of the objective function:

NMinimize attempts to find a global minimum numerically, but may find a local minimum:

FindMinimum finds local minima depending on the starting point:

The minimum point satisfies the constraints, unless messages say otherwise:

The given point minimizes the distance from the point {2,}:

When the minimum is not attained, Minimize may give a point on the boundary:

Here the objective function tends to the minimum value when y tends to infinity:

Minimize can solve linear programming problems:

LinearProgramming can be used to solve the same problem given in matrix notation:

This computes the minimum value:

Use RegionDistance and RegionNearest to compute the distance and the nearest point:

Both can be computed using Minimize:

Use RegionBounds to compute the bounding box:

Use Maximize and Minimize to compute the same bounds:

Possible Issues  (1)

Minimize requires that all functions present in the input be real-valued:

Values for which the equation is satisfied but the square roots are not real are disallowed:

See Also

MinValue  ArgMin  Maximize  NMinimize  FindMinimum  Min  MinimalBy  D  FindInstance  LeastSquares  RegionDistance

Function Repository: GlobalMinima  LocalMinima  GlobalExtrema  LocalExtrema  StationaryPoints  VariationalBound

Tech Notes

    ▪
  • Symbolic Mathematics: Basic Operations
  • ▪
  • Inequalities
  • ▪
  • Minimization and Maximization
  • ▪
  • Constrained Optimization
  • ▪
  • Unconstrained Optimization
  • ▪
  • Implementation notes: Algebra and Calculus

Related Guides

    ▪
  • Optimization
  • ▪
  • Discrete Mathematics
  • ▪
  • Solvers over Regions
  • ▪
  • Discrete Calculus
  • ▪
  • Calculus
  • ▪
  • Graph Programming
  • ▪
  • Symbolic Vectors, Matrices and Arrays
  • ▪
  • Boolean Computation
  • ▪
  • Finite Mathematics
  • ▪
  • Solid Geometry
  • ▪
  • Plane Geometry
  • ▪
  • Convex Optimization
  • ▪
  • Geometric Computation
  • ▪
  • Polygons
  • ▪
  • Scientific Models
  • ▪
  • Polyhedra

History

Introduced in 2003 (5.0) | Updated in 2014 (10.0) ▪ 2021 (12.3)

Wolfram Research (2003), Minimize, Wolfram Language function, https://reference.wolfram.com/language/ref/Minimize.html (updated 2021).

Text

Wolfram Research (2003), Minimize, Wolfram Language function, https://reference.wolfram.com/language/ref/Minimize.html (updated 2021).

CMS

Wolfram Language. 2003. "Minimize." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/Minimize.html.

APA

Wolfram Language. (2003). Minimize. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Minimize.html

BibTeX

@misc{reference.wolfram_2025_minimize, author="Wolfram Research", title="{Minimize}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/Minimize.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_minimize, organization={Wolfram Research}, title={Minimize}, year={2021}, url={https://reference.wolfram.com/language/ref/Minimize.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English