Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
Ball
  • See Also
    • Disk
    • Sphere
    • Ellipsoid
    • Circumsphere
    • Cylinder
    • Cone
    • ImplicitRegion
    • BoundingRegion

    • Formats
    • PLY
    • X3D
  • Related Guides
    • Graphics Objects
    • Geometric Computation
    • Basic Geometric Regions
    • Partial Differential Equations
    • Plane Geometry
    • Solid Geometry
    • See Also
      • Disk
      • Sphere
      • Ellipsoid
      • Circumsphere
      • Cylinder
      • Cone
      • ImplicitRegion
      • BoundingRegion

      • Formats
      • PLY
      • X3D
    • Related Guides
      • Graphics Objects
      • Geometric Computation
      • Basic Geometric Regions
      • Partial Differential Equations
      • Plane Geometry
      • Solid Geometry

Ball[p]

represents the unit ball centered at the point p.

Ball[p,r]

represents the ball of radius r centered at the point p.

Ball[{p1,p2,…},r]

represents a collection of balls of radius r.

Details and Options
Details and Options Details and Options
Background & Context
Examples  
Basic Examples  
Scope  
Graphics  
Specification  
Styling  
Coordinates  
Regions  
Applications  
Properties & Relations  
Neat Examples  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • Disk
    • Sphere
    • Ellipsoid
    • Circumsphere
    • Cylinder
    • Cone
    • ImplicitRegion
    • BoundingRegion

    • Formats
    • PLY
    • X3D
  • Related Guides
    • Graphics Objects
    • Geometric Computation
    • Basic Geometric Regions
    • Partial Differential Equations
    • Plane Geometry
    • Solid Geometry
    • See Also
      • Disk
      • Sphere
      • Ellipsoid
      • Circumsphere
      • Cylinder
      • Cone
      • ImplicitRegion
      • BoundingRegion

      • Formats
      • PLY
      • X3D
    • Related Guides
      • Graphics Objects
      • Geometric Computation
      • Basic Geometric Regions
      • Partial Differential Equations
      • Plane Geometry
      • Solid Geometry

Ball

Ball[p]

represents the unit ball centered at the point p.

Ball[p,r]

represents the ball of radius r centered at the point p.

Ball[{p1,p2,…},r]

represents a collection of balls of radius r.

Details and Options

  • Ball is also known as center interval, disk, ball, and hyperball.
  • Ball can be used as a geometric region and a graphics primitive.
  • Ball[] is equivalent to Ball[{0,0,0}].
  • Ball[n] for integer n is equivalent to Ball[{0,…,0}], a unit ball in .
  • Ball represents a filled ball {x|TemplateBox[{{x, -, p}}, Norm]<=r}. The region is dimensional for point p of length .
  • Ball allows p to be any point in and r any positive real number.
  • Ball can be used in Graphics and Graphics3D.
  • In graphics, the points p, pi and radii r can be Scaled and Dynamic expressions.
  • Graphics rendering is affected by directives such as FaceForm, EdgeForm, Specularity, Opacity, and color.
  • Ball[{p1,p2,…},{r1,r2,…}] represents a collection of spheres with centers pi and radii ri.

Background & Context

  • Ball is a graphics and geometry primitive that represents a ball in -dimensional space. In particular, Ball[p,r] represents a (filled-in) ball {x:TemplateBox[{{x, -, p}}, Norm]<=r} in TemplateBox[{}, Reals]^n with center p and radius r, where r may be any non-negative real number and p can have any positive length . The shorthand form Ball[p] is equivalent to Ball[p,1] and Ball[n] is equivalent to Ball[ConstantArray[0, n],1], while Ball[] autoevaluates to Ball[{0,0,0}].
  • Collections of ball objects (multi-balls) of common radius may be efficiently represented using Ball[{p1,…,pk},r] and balls of varying radii represented using Ball[{p1,…,pk},{r1,…,rk}].
  • Ball objects can be visually formatted in two and three dimensions using Graphics and Graphics3D, respectively. The appearance of Ball objects in graphics can be modified by specifying the edge directive EdgeForm (in 2D) or face directive FaceForm (in 3D), color directives such as Red, the transparency and specularity directives Opacity and Specularity, and the style option Antialiasing.
  • Ball may also serve as a region specification over which a computation should be performed. For example, Integrate[1,{x,y,z}∈Ball[{0,0,0},r]] and Volume[Ball[{0,0,0},r]] both return the volume of a 3D ball of radius .
  • Ball is related to a number of other symbols. Sphere represents the boundary of a ball, as can be computed using RegionBoundary[Ball[{x,y,z},r]]. Ball is a generalization of Interval and Disk to arbitrary dimension, and Ellipsoid is a generalization of Ball in the sense that Ball[{p1,…,pk},1] is equivalent to Ellipsoid[{p1,…,pk},ConstantArray[1,k]] for all . SphericalShell gives a filled shell obtained by removing a small ball from the interior of a larger concentric ball. Ball objects in 3D may be represented as ImplicitRegion[(x-u)2+(y-v)2+(z-w)2≤r2,{u,v,w}] or ParametricRegion[a{Cos[θ]Sin[ϕ],Sin[θ]Sin[ϕ],Cos[ϕ]}-{x,y,z},{{θ,0,2π},{ϕ,0,π},{a,0,r}}]. Precomputed properties of the 3D ball and its variants in standard position are available using SolidData["entity", "property"] or EntityValue[Entity["Ball","entity"],"property"], where "entity" is one of "Ball" or "HalfBall".

Examples

open all close all

Basic Examples  (2)

A unit ball in 3D:

In 2D:

Volume and centroid:

Scope  (22)

Graphics  (12)

Specification  (4)

The default is a unit ball at the origin in 3D:

Unit balls in different dimensions:

Balls with different positions and radii:

Multiple balls with equal radii:

Styling  (4)

Balls with different specular exponents:

Black ball that glows red:

Opacity specifies the face opacity:

2D styling:

Coordinates  (4)

Specify coordinates by fractions of the plot range:

Specify radius by fractions of the plot range:

Specify scaled offsets from the ordinary coordinates:

Points can be Dynamic:

Regions  (10)

Embedding dimension is the dimension of the space in which the ball lives:

Geometric dimension is the dimension of the shape itself:

Membership testing:

Get conditions for point membership:

Volume:

Centroid:

Distance from a point:

The distance to the nearest point for a 2D ball:

The equidistance contours for a 3D ball:

Signed distance from a point:

Signed distance to a 2D ball:

Nearest point in the region:

Nearest points to an enclosing sphere:

A ball is bounded:

Find its range:

Integrate over a ball region:

Optimize over a ball region:

Solve equations in a ball region:

Applications  (3)

Find the minimum surface area for a ball with volume :

Total mass for a ball region with density given by :

Find the mass of caffeine in a ball with a radius of 3 centimeters:

Density of caffeine:

Volume of ball:

Mass of caffeine in the ball:

Properties & Relations  (5)

Disk is a special case of Ball:

Sphere is the RegionBoundary of Ball:

Ellipsoid is a generalization of Ball:

ImplicitRegion can represent any Ball:

Ball is a norm ball for the Euclidean norm:

Neat Examples  (1)

Random ball collections:

See Also

Disk  Sphere  Ellipsoid  Circumsphere  Cylinder  Cone  ImplicitRegion  BoundingRegion

Formats: PLY  X3D

Related Guides

    ▪
  • Graphics Objects
  • ▪
  • Geometric Computation
  • ▪
  • Basic Geometric Regions
  • ▪
  • Partial Differential Equations
  • ▪
  • Plane Geometry
  • ▪
  • Solid Geometry

History

Introduced in 2014 (10.0)

Wolfram Research (2014), Ball, Wolfram Language function, https://reference.wolfram.com/language/ref/Ball.html.

Text

Wolfram Research (2014), Ball, Wolfram Language function, https://reference.wolfram.com/language/ref/Ball.html.

CMS

Wolfram Language. 2014. "Ball." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Ball.html.

APA

Wolfram Language. (2014). Ball. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Ball.html

BibTeX

@misc{reference.wolfram_2025_ball, author="Wolfram Research", title="{Ball}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/Ball.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_ball, organization={Wolfram Research}, title={Ball}, year={2014}, url={https://reference.wolfram.com/language/ref/Ball.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English