Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
FactorialPower
  • See Also
    • Factorial
    • Gamma
    • Pochhammer
    • Binomial
    • Power
    • Sum
    • DifferenceDelta
    • DiscreteRatio
    • InterpolatingPolynomial
    • Permutations
  • Related Guides
    • Combinatorial Functions
    • Discrete Calculus
    • Recurrence and Sum Functions
    • Gamma Functions and Related Functions
    • See Also
      • Factorial
      • Gamma
      • Pochhammer
      • Binomial
      • Power
      • Sum
      • DifferenceDelta
      • DiscreteRatio
      • InterpolatingPolynomial
      • Permutations
    • Related Guides
      • Combinatorial Functions
      • Discrete Calculus
      • Recurrence and Sum Functions
      • Gamma Functions and Related Functions

FactorialPower[x,n]

gives the factorial power TemplateBox[{x, n}, FactorialPower].

FactorialPower[x,n,h]

gives the step-h factorial power TemplateBox[{x, n, h}, FactorialPower3].

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation  
Series Expansions  
Function Identities and Simplifications  
Applications  
Properties & Relations  
Possible Issues  
See Also
Related Guides
Related Links
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • Factorial
    • Gamma
    • Pochhammer
    • Binomial
    • Power
    • Sum
    • DifferenceDelta
    • DiscreteRatio
    • InterpolatingPolynomial
    • Permutations
  • Related Guides
    • Combinatorial Functions
    • Discrete Calculus
    • Recurrence and Sum Functions
    • Gamma Functions and Related Functions
    • See Also
      • Factorial
      • Gamma
      • Pochhammer
      • Binomial
      • Power
      • Sum
      • DifferenceDelta
      • DiscreteRatio
      • InterpolatingPolynomial
      • Permutations
    • Related Guides
      • Combinatorial Functions
      • Discrete Calculus
      • Recurrence and Sum Functions
      • Gamma Functions and Related Functions

FactorialPower

FactorialPower[x,n]

gives the factorial power TemplateBox[{x, n}, FactorialPower].

FactorialPower[x,n,h]

gives the step-h factorial power TemplateBox[{x, n, h}, FactorialPower3].

Details

  • Mathematical function, suitable for both symbolic and numeric manipulation.
  • For integer n, TemplateBox[{x, n}, FactorialPower] is given by , and TemplateBox[{x, n, h}, FactorialPower3] is given by .
  • TemplateBox[{x, n}, FactorialPower] is given for any n by TemplateBox[{{x, +, 1}}, Gamma]/TemplateBox[{{x, -, n, +, 1}}, Gamma].
  • TemplateBox[{TemplateBox[{x, k}, FactorialPower], x}, DifferenceDelta2] is given by k TemplateBox[{x, {k, -, 1}}, FactorialPower] and sum_xTemplateBox[{x, k}, FactorialPower] is given by TemplateBox[{x, {k, +, 1}}, FactorialPower]/(k+1).
  • FactorialPower[x,n] evaluates automatically only when x and n are numbers.
  • FunctionExpand always converts FactorialPower to a polynomial or combination of gamma functions.
  • FactorialPower can be used with Interval and CenteredInterval objects. »

Examples

open all close all

Basic Examples  (7)

Find the "factorial square" of 10:

FactorialPower does not automatically expand out:

Use FunctionExpand to do the expansion:

Plot over a subset of the reals:

Plot over a subset of complexes:

Series expansion at the origin:

Series expansion at Infinity:

Series expansion at a singular point:

Scope  (34)

Numerical Evaluation  (7)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number input:

Evaluate efficiently at high precision:

FactorialPower threads elementwise over lists:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around:

Compute the elementwise values of an array:

Or compute the matrix FactorialPower function using MatrixFunction:

Specific Values  (6)

Values of FactorialPower at fixed points:

Obtain the polynomial representation FactorialPower[x,n] for integer values of n:

With step , FactorialPower[x,n,h] gives the rising factorial:

This is equivalent to Pochhammer:

Expand FactorialPower[x,n] for a fixed value of x:

Do the same while adding integer values for the third argument:

Value with second argument zero:

Value with first argument 0 and positive second argument:

Find a value of x for which FactorialPower[x,1/7]=1.2:

Visualization  (3)

Plot the FactorialPower function for various orders:

Plot FactorialPower as a function of its parameter :

Plot the real part of TemplateBox[{{(, z, )}, 5}, FactorialPower]:

Plot the imaginary part of TemplateBox[{{(, z, )}, 5}, FactorialPower]:

Function Properties  (10)

Real domain of the factorial power:

Complex domain:

Function range of FactorialPower[x,n] for various fixed values of n:

TemplateBox[{x, 3}, FactorialPower] is an analytic function of x:

TemplateBox[{x, 3}, FactorialPower] is neither nondecreasing nor nonincreasing:

TemplateBox[{x, 3}, FactorialPower] is not injective:

TemplateBox[{x, 3}, FactorialPower] is surjective:

FactorialPower is neither non-negative nor non-positive:

TemplateBox[{x, y}, FactorialPower] has potential singularities and discontinuities when is a negative integer:

TemplateBox[{x, 3}, FactorialPower] is neither convex nor concave:

TraditionalForm formatting:

Differentiation  (3)

First derivative of TemplateBox[{x, n}, FactorialPower] with respect to :

First derivative of TemplateBox[{x, n}, FactorialPower] with respect to :

Higher derivatives of TemplateBox[{x, n}, FactorialPower] with respect to :

Plot the higher derivatives with respect to x when n=2:

Series Expansions  (3)

Find the Taylor expansion using Series:

Plots of the first two approximations around :

Taylor expansion at a generic point:

FactorialPower can be applied to a power series:

Function Identities and Simplifications  (2)

For positive integers TemplateBox[{x, n}, FactorialPower]= ((-1)^n TemplateBox[{{n, -, x}}, Gamma])/(TemplateBox[{{-, x}}, Gamma]):

Recurrence relation:

Applications  (4)

The number of length-r permutations of a length-n list of distinct elements is given by FactorialPower[n,r]:

The number of triples of distinct digits:

Approximate a function using Newton's forward difference formula [MathWorld]:

Construct an approximation by truncating the series:

First 10 Nørlund numbers:

Compare with their integral definition:

Properties & Relations  (11)

FactorialPower is to Sum as Power is to Integrate:

FactorialPower satisfies :

This makes FactorialPower analogous to Power and its relationship to D:

FactorialPower can always be expressed as a ratio of gamma functions:

Compare with the expansion of :

FactorialPower[x,n] is equivalent to n!TemplateBox[{x, n}, Binomial]:

FactorialPower[x,x] is equivalent to x!:

Pochhammer can be expressed in terms of a single FactorialPower expression:

Verify the identity TemplateBox[{x, k}, Pochhammer]=TemplateBox[{x, k, {-, 1}}, FactorialPower3] for integer :

This function is often called the rising factorial:

Verify an expansion of FactorialPower in terms of Pochhammer for the first few cases:

FactorialPower can be represented as a DifferenceRoot:

The generating function for FactorialPower:

The exponential generating function for FactorialPower:

Possible Issues  (2)

Generically, Power is recovered as the limit as of FactorialPower:

This may not be true, however, if is kept on the negative real axis:

The generic series expansion around the origin may not be defined at integer points:

Use assumptions to refine the result:

Compare with the expansion for an explicit value of :

See Also

Factorial  Gamma  Pochhammer  Binomial  Power  Sum  DifferenceDelta  DiscreteRatio  InterpolatingPolynomial  Permutations

Related Guides

    ▪
  • Combinatorial Functions
  • ▪
  • Discrete Calculus
  • ▪
  • Recurrence and Sum Functions
  • ▪
  • Gamma Functions and Related Functions

Related Links

  • MathWorld

History

Introduced in 2008 (7.0)

Wolfram Research (2008), FactorialPower, Wolfram Language function, https://reference.wolfram.com/language/ref/FactorialPower.html.

Text

Wolfram Research (2008), FactorialPower, Wolfram Language function, https://reference.wolfram.com/language/ref/FactorialPower.html.

CMS

Wolfram Language. 2008. "FactorialPower." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FactorialPower.html.

APA

Wolfram Language. (2008). FactorialPower. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FactorialPower.html

BibTeX

@misc{reference.wolfram_2025_factorialpower, author="Wolfram Research", title="{FactorialPower}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/FactorialPower.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_factorialpower, organization={Wolfram Research}, title={FactorialPower}, year={2008}, url={https://reference.wolfram.com/language/ref/FactorialPower.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English