Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
UpperTriangularize
  • See Also
    • LowerTriangularize
    • UpperTriangularMatrix
    • UpperTriangularMatrixQ
    • Diagonal
    • Band
    • LUDecomposition
  • Related Guides
    • Parts of Matrices
    • Matrix Operations
    • Matrices and Linear Algebra
    • Linear Systems
    • See Also
      • LowerTriangularize
      • UpperTriangularMatrix
      • UpperTriangularMatrixQ
      • Diagonal
      • Band
      • LUDecomposition
    • Related Guides
      • Parts of Matrices
      • Matrix Operations
      • Matrices and Linear Algebra
      • Linear Systems

UpperTriangularize[m]

gives a matrix in which all but the upper triangular elements of m are replaced with zeros.

UpperTriangularize[m,k]

replaces with zeros only the elements below the k^(th) subdiagonal of m.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Basic Uses  
Special Matrices  
Options  
TargetStructure  
Applications  
Properties & Relations  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • LowerTriangularize
    • UpperTriangularMatrix
    • UpperTriangularMatrixQ
    • Diagonal
    • Band
    • LUDecomposition
  • Related Guides
    • Parts of Matrices
    • Matrix Operations
    • Matrices and Linear Algebra
    • Linear Systems
    • See Also
      • LowerTriangularize
      • UpperTriangularMatrix
      • UpperTriangularMatrixQ
      • Diagonal
      • Band
      • LUDecomposition
    • Related Guides
      • Parts of Matrices
      • Matrix Operations
      • Matrices and Linear Algebra
      • Linear Systems

UpperTriangularize

UpperTriangularize[m]

gives a matrix in which all but the upper triangular elements of m are replaced with zeros.

UpperTriangularize[m,k]

replaces with zeros only the elements below the k^(th) subdiagonal of m.

Details and Options

  • UpperTriangularize[m] works even if m is not a square matrix.
  • In UpperTriangularize[m,k], positive k refers to subdiagonals above the main diagonal and negative k refers to subdiagonals below the main diagonal.
  • UpperTriangularize works with SparseArray objects.
  • UpperTriangularize[…,TargetStructure->struct] returns the upper triangular matrix in the format specified by struct. Possible settings include:
  • Automaticautomatically choose the representation returned
    "Dense"represent the matrix as a dense matrix
    "Sparse"represent the matrix as a sparse array
    "Structured"represent the matrix as an UpperTriangularMatrix
  • With UpperTriangularize[…,TargetStructureAutomatic], the structure of the resulting upper triangular matrix is the same as that of the original matrix, if the original matrix is a dense matrix, a sparse array, a structured DiagonalMatrix or a structured UpperTriangularMatrix. Otherwise, a dense matrix is returned.

Examples

open all close all

Basic Examples  (3)

Get the upper triangular part of a matrix:

Get the strictly upper triangular part of a matrix:

Get the upper triangular part of a matrix plus the diagonal below the main diagonal:

Scope  (12)

Basic Uses  (8)

Get the upper triangular part of non-square matrices:

Find the upper triangular part of a machine-precision matrix:

Upper triangular part of a complex matrix:

Upper triangular part of an exact matrix:

Upper triangular part of an arbitrary-precision matrix:

Compute the upper triangular part of a symbolic matrix:

Large matrices are handled efficiently:

The number of rows or columns limits the meaningful values of the parameter k:

Special Matrices  (4)

The upper triangular part of a sparse matrix is returned as a sparse matrix:

Format the result:

The upper triangular part of structured matrices:

The upper triangular part of an identity matrix is the matrix itself:

This is true of any diagonal matrix:

Compute the upper triangular part, including the subdiagonal, for HilbertMatrix:

Options  (2)

TargetStructure  (2)

A matrix:

Return the result as a dense matrix:

Return the result as a sparse matrix:

Return the result as an UpperTriangularMatrix:

A sparse array:

The setting TargetStructureAutomatic gives a sparse result:

Convert the sparse array to a dense matrix:

The setting TargetStructureAutomatic gives a dense result:

Applications  (3)

LUDecomposition decomposes a matrix as a product of upper and lower triangular matrices, returned as a triple {lu,perm,cond}:

Extract the strictly lower part of lu with LowerTriangularize and place ones on the diagonal:

Extract the upper part of lu with UpperTriangularize:

Display the three matrices:

Reconstruct the original matrix as a permutation of the product of l and u:

SchurDecomposition gives a 2×2-block upper triangular matrix:

Verify this matrix is upper triangular starting from the first subdiagonal:

JordanDecomposition relates any matrix to an upper triangular matrix via a similarity transformation m=s.j.TemplateBox[{s}, Inverse]:

Visualize the three matrices:

Verify that the Jordan matrix is upper triangular and similar to the original matrix:

The matrix is diagonalizable iff its Jordan matrix is also lower triangular:

Properties & Relations  (11)

Matrices returned by UpperTriangularize satisfy UpperTriangularMatrixQ:

The inverse of an upper triangular matrix is upper triangular:

This extends to arbitrary powers and functions:

The product of two (or more) upper triangular matrices is upper triangular:

The determinant of a triangular matrix equals the product of the diagonal entries:

Eigenvalues of a triangular matrix equal its diagonal elements:

QRDecomposition gives an upper triangular matrix:

CholeskyDecomposition gives an upper triangular matrix:

JordanDecomposition gives an upper triangular matrix:

HessenbergDecomposition returns a matrix that is upper triangular with an added subdiagonal:

HermiteDecomposition gives an upper triangular matrix:

UpperTriangularize[m,k] is equivalent to Transpose[LowerTriangularize[Transpose[m],-k]]:

See Also

LowerTriangularize  UpperTriangularMatrix  UpperTriangularMatrixQ  Diagonal  Band  LUDecomposition

Related Guides

    ▪
  • Parts of Matrices
  • ▪
  • Matrix Operations
  • ▪
  • Matrices and Linear Algebra
  • ▪
  • Linear Systems

History

Introduced in 2008 (7.0) | Updated in 2023 (13.3)

Wolfram Research (2008), UpperTriangularize, Wolfram Language function, https://reference.wolfram.com/language/ref/UpperTriangularize.html (updated 2023).

Text

Wolfram Research (2008), UpperTriangularize, Wolfram Language function, https://reference.wolfram.com/language/ref/UpperTriangularize.html (updated 2023).

CMS

Wolfram Language. 2008. "UpperTriangularize." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/UpperTriangularize.html.

APA

Wolfram Language. (2008). UpperTriangularize. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/UpperTriangularize.html

BibTeX

@misc{reference.wolfram_2025_uppertriangularize, author="Wolfram Research", title="{UpperTriangularize}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/UpperTriangularize.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_uppertriangularize, organization={Wolfram Research}, title={UpperTriangularize}, year={2023}, url={https://reference.wolfram.com/language/ref/UpperTriangularize.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English