Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
NumberLinePlot
  • See Also
    • ListPlot
    • RegionPlot
    • Graphics
    • DateListPlot
    • Interval
    • FunctionDomain
    • FunctionRange
    • TimelinePlot
    • RadialAxisPlot
    • ParallelAxisPlot
  • Related Guides
    • Data Visualization
    • Function Visualization
    • Tabular Visualization
    • See Also
      • ListPlot
      • RegionPlot
      • Graphics
      • DateListPlot
      • Interval
      • FunctionDomain
      • FunctionRange
      • TimelinePlot
      • RadialAxisPlot
      • ParallelAxisPlot
    • Related Guides
      • Data Visualization
      • Function Visualization
      • Tabular Visualization

NumberLinePlot[{v1,v2,…}]

plots the values vi on a number line.

NumberLinePlot[pred,x]

plots a number line illustrating the region pred.

NumberLinePlot[pred,{x,xmin,xmax}]

plots the number to extend over the interval from xmin to xmax.

NumberLinePlot[{spec1,spec2,…},…]

plots several number lines.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Data  
Tabular Data  
Presentation  
Options  
AspectRatio  
Axes  
AxesLabel  
Show More Show More
AxesStyle  
ImageSize  
PlotLegends  
PlotRange  
PlotStyle  
PlotTheme  
Spacings  
Ticks  
TicksStyle  
Applications  
Properties & Relations  
See Also
Related Guides
Related Links
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • ListPlot
    • RegionPlot
    • Graphics
    • DateListPlot
    • Interval
    • FunctionDomain
    • FunctionRange
    • TimelinePlot
    • RadialAxisPlot
    • ParallelAxisPlot
  • Related Guides
    • Data Visualization
    • Function Visualization
    • Tabular Visualization
    • See Also
      • ListPlot
      • RegionPlot
      • Graphics
      • DateListPlot
      • Interval
      • FunctionDomain
      • FunctionRange
      • TimelinePlot
      • RadialAxisPlot
      • ParallelAxisPlot
    • Related Guides
      • Data Visualization
      • Function Visualization
      • Tabular Visualization

NumberLinePlot

NumberLinePlot[{v1,v2,…}]

plots the values vi on a number line.

NumberLinePlot[pred,x]

plots a number line illustrating the region pred.

NumberLinePlot[pred,{x,xmin,xmax}]

plots the number to extend over the interval from xmin to xmax.

NumberLinePlot[{spec1,spec2,…},…]

plots several number lines.

Details and Options

  • The vi can be numbers, Interval objects, Around objects or lists of these.
  • The predicate pred can be any logical combination of inequalities.
  • The speci can be numbers, intervals, or symbolic predicates.
  • NumberLinePlot[Tabular[…]cspec] extracts and plots values from the tabular object using the column specification cspec.
  • The following forms of column specifications cspec are allowed for plotting tabular data:
  • colplot values from column col
    {col1,col2,…,coln}plot columns {col1, …, coln} as groups of values
  • NumberLinePlot has the same options as Graphics, with the following additions: [List of all options]
  • AspectRatio Automaticratio of height to width
    IntervalMarkersAutomatichow to render uncertainty
    IntervalMarkersStyleAutomaticstyle for uncertainty elements
    PlotLegends Nonelegends for the sets
    PlotStyle Automaticgraphics directives to specify styles
    PlotTheme $PlotThemeoverall theme for the plot
    Spacings Automaticwhether to plot different sets in the list pred at different heights
  • ColorData["DefaultPlotColors"] gives the default sequence of colors used by PlotStyle.
  • The default setting of Spacings->Automatic evenly spaces each speci above the axis.
  • Spacings->{s1,s2,…} places spec1 distance s1 from the axis, spec2 distance s2 from spec1, etc.
  • Spacings->n is equivalent to Spacings->{n,n,…}
  • Spacings->None places all of the speci at the same height above the axis.
  • With the default setting of AspectRatio->Automatic, the ratio is chosen based on the layout of the speci.
  • List of all options
  • Highlight options with settings specific to NumberLinePlot
  • AlignmentPointCenterthe default point in the graphic to align with
    AspectRatioAutomaticratio of height to width
    AxesFalsewhether to draw axes
    AxesLabelNoneaxes labels
    AxesOriginAutomaticwhere axes should cross
    AxesStyle{}style specifications for the axes
    BackgroundNonebackground color for the plot
    BaselinePositionAutomatichow to align with a surrounding text baseline
    BaseStyle{}base style specifications for the graphic
    ContentSelectableAutomaticwhether to allow contents to be selected
    CoordinatesToolOptionsAutomaticdetailed behavior of the coordinates tool
    Epilog{}primitives rendered after the main plot
    FormatTypeTraditionalFormthe default format type for text
    FrameFalsewhether to put a frame around the plot
    FrameLabelNoneframe labels
    FrameStyle{}style specifications for the frame
    FrameTicksAutomaticframe ticks
    FrameTicksStyle{}style specifications for frame ticks
    GridLinesNonegrid lines to draw
    GridLinesStyle{}style specifications for grid lines
    ImageMargins0.the margins to leave around the graphic
    ImagePaddingAllwhat extra padding to allow for labels etc.
    ImageSizeAutomaticthe absolute size at which to render the graphic
    IntervalMarkersAutomatichow to render uncertainty
    IntervalMarkersStyleAutomaticstyle for uncertainty elements
    LabelStyle{}style specifications for labels
    MethodAutomaticdetails of graphics methods to use
    PlotLabelNonean overall label for the plot
    PlotLegendsNonelegends for the sets
    PlotRangeAllrange of values to include
    PlotRangeClippingFalsewhether to clip at the plot range
    PlotRangePaddingAutomatichow much to pad the range of values
    PlotRegionAutomaticthe final display region to be filled
    PlotStyleAutomaticgraphics directives to specify styles
    PlotTheme$PlotThemeoverall theme for the plot
    PreserveImageOptionsAutomaticwhether to preserve image options when displaying new versions of the same graphic
    Prolog{}primitives rendered before the main plot
    RotateLabelTruewhether to rotate y labels on the frame
    SpacingsAutomaticwhether to plot different sets in the list pred at different heights
    TicksAutomaticaxes ticks
    TicksStyle{}style specifications for axes ticks

Examples

open all close all

Basic Examples  (5)

Show the first 10 prime numbers on a number line:

Display an interval:

Show where an inequality is true:

Show an infinite interval:

Show several sets on a single number line:

Scope  (9)

Data  (7)

Show multiple sets:

Use Interval and single points:

Group intervals and points into a single list to represent a single set:

Use an inequality:

Use a logical conjunction of equalities and inequalities:

Use a list to represent more than one set:

Use a more complicated inequality:

Tabular Data  (1)

Get tabular data:

Plot petal length in a number line:

Plot elements of both petal and sepal Length as separate number lines:

Include a legend for the plot:

Create columns of petal length per species:

Plot petal lengths grouped by species:

Presentation  (1)

Use a theme with dark background and high-contrast colors:

Use a theme with detailed information:

Options  (43)

AspectRatio  (4)

By default, the ratio of the height to width for the plot is determined automatically:

Make the height the same as the width with AspectRatio1:

Use numerical value to specify the height-to-width ratio:

AspectRatioFull adjusts the height and width to tightly fit inside other constructs:

Axes  (2)

By default, axes are drawn:

Use AxesFalse to turn off axes:

AxesLabel  (2)

No axes labels are drawn by default:

Place a label on the axis:

AxesStyle  (4)

Change the style for the axes:

Specify the style of each axis:

Use different styles for the ticks and the axes:

Use different styles for the labels and the axes:

ImageSize  (7)

Use named sizes such as Tiny, Small, Medium and Large:

Specify the width of the plot:

Specify the height of the plot:

Allow the width and height to be up to a certain size:

Specify the width and height for a graphic, padding with space if necessary:

Setting AspectRatioFull will fill the available space:

Use maximum sizes for the width and height:

Use ImageSizeFull to fill the available space in an object:

Specify the image size as a fraction of the available space:

PlotLegends  (7)

By default, no legends are used:

Create a legend based on the expressions:

Create a legend with placeholder text:

Create a legend with specific labels:

PlotLegends picks up PlotStyle values automatically:

Use Placed to position legends:

Use LineLegend to modify the appearance of the legend:

PlotRange  (2)

PlotRange is automatically calculated:

Set explicit plot range:

PlotStyle  (3)

By default, different styles are chosen for multiple curves:

Explicitly specify the style for different curves:

Specify styles for the endpoints:

PlotTheme  (1)

Use a theme with simple ticks and bright colors:

Add another theme with legends:

Change the colors:

Spacings  (4)

By default, sets are evenly spaced above the axis:

Use Spacings->None to place the sets on top of one another:

Use Spacings->0 to place all the sets on the axis:

Place the second set close to the first set:

Ticks  (4)

Ticks are placed automatically in each plot:

Use TicksNone to not draw any tick marks:

Place tick marks at specific positions:

Draw tick marks at the specified positions with the specified labels:

TicksStyle  (3)

Specify overall ticks style, including the tick labels:

Specify tick marks with scaled lengths:

Customize each tick with position, length, labeling and styling:

Applications  (6)

Illustrate the domain of a function:

Illustrate the Range of a function:

Visualize the accumulation points of a sequence on the real line:

Show where a function is increasing or decreasing:

Visualize the construction of the Cantor set:

Illustrate the not-so-trivial history of Albert Einstein's citizenship:

Properties & Relations  (3)

Use RegionPlot and RegionPlot3D for showing higher-dimensional regions:

Use ListPlot and ListLinePlot to show numbers as a list of heights:

Use RadialAxisPlot and ParallelAxisPlot to display multidimensional points:

See Also

ListPlot  RegionPlot  Graphics  DateListPlot  Interval  FunctionDomain  FunctionRange  TimelinePlot  RadialAxisPlot  ParallelAxisPlot

Function Repository: TapeDiagram

Related Guides

    ▪
  • Data Visualization
  • ▪
  • Function Visualization
  • ▪
  • Tabular Visualization

Related Links

  • An Elementary Introduction to the Wolfram Language : Displaying Lists

History

Introduced in 2014 (10.0) | Updated in 2019 (12.0) ▪ 2025 (14.2)

Wolfram Research (2014), NumberLinePlot, Wolfram Language function, https://reference.wolfram.com/language/ref/NumberLinePlot.html (updated 2025).

Text

Wolfram Research (2014), NumberLinePlot, Wolfram Language function, https://reference.wolfram.com/language/ref/NumberLinePlot.html (updated 2025).

CMS

Wolfram Language. 2014. "NumberLinePlot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/NumberLinePlot.html.

APA

Wolfram Language. (2014). NumberLinePlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NumberLinePlot.html

BibTeX

@misc{reference.wolfram_2025_numberlineplot, author="Wolfram Research", title="{NumberLinePlot}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/NumberLinePlot.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_numberlineplot, organization={Wolfram Research}, title={NumberLinePlot}, year={2025}, url={https://reference.wolfram.com/language/ref/NumberLinePlot.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English