Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
GeoGridPosition
  • See Also
    • GeoProjectionData
    • GeoPosition
    • GeoPositionENU
    • GeoPositionXYZ
    • GeoGridVector
    • GeoAntipode
    • GeodesyData
    • CountryData
    • GeoGraphics
    • GeoProjection
  • Related Guides
    • Geodesy
    • Maps & Cartography
  • Tech Notes
    • GeoGraphics
    • See Also
      • GeoProjectionData
      • GeoPosition
      • GeoPositionENU
      • GeoPositionXYZ
      • GeoGridVector
      • GeoAntipode
      • GeodesyData
      • CountryData
      • GeoGraphics
      • GeoProjection
    • Related Guides
      • Geodesy
      • Maps & Cartography
    • Tech Notes
      • GeoGraphics

GeoGridPosition[{x,y},proj]

represents a point {x,y} in a planimetric cartographic grid using the projection proj.

GeoGridPosition[{x,y,h},proj]

represents a point {x,y,h} in a cartographic grid with height h with respect to the reference ellipsoid.

GeoGridPosition[{{x1,y1},{x2,y2},…},proj]

represents an array of cartographic grid positions.

GeoGridPosition[{x,y,h},proj,datum]

represents a point in a cartographic grid obtained by projection from data in the given datum.

GeoGridPosition[entity,proj]

returns the cartographic grid position of the specified geographical entity.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Position Specification  
Conversion to GeoGridPosition  
Geo Grid Position Arrays  
Coordinate Extraction  
Applications  
Properties & Relations  
Possible Issues  
See Also
Tech Notes
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • GeoProjectionData
    • GeoPosition
    • GeoPositionENU
    • GeoPositionXYZ
    • GeoGridVector
    • GeoAntipode
    • GeodesyData
    • CountryData
    • GeoGraphics
    • GeoProjection
  • Related Guides
    • Geodesy
    • Maps & Cartography
  • Tech Notes
    • GeoGraphics
    • See Also
      • GeoProjectionData
      • GeoPosition
      • GeoPositionENU
      • GeoPositionXYZ
      • GeoGridVector
      • GeoAntipode
      • GeodesyData
      • CountryData
      • GeoGraphics
      • GeoProjection
    • Related Guides
      • Geodesy
      • Maps & Cartography
    • Tech Notes
      • GeoGraphics

GeoGridPosition

GeoGridPosition[{x,y},proj]

represents a point {x,y} in a planimetric cartographic grid using the projection proj.

GeoGridPosition[{x,y,h},proj]

represents a point {x,y,h} in a cartographic grid with height h with respect to the reference ellipsoid.

GeoGridPosition[{{x1,y1},{x2,y2},…},proj]

represents an array of cartographic grid positions.

GeoGridPosition[{x,y,h},proj,datum]

represents a point in a cartographic grid obtained by projection from data in the given datum.

GeoGridPosition[entity,proj]

returns the cartographic grid position of the specified geographical entity.

Details

  • Coordinates x, y in GeoGridPosition[{x,y},proj] must be given as numeric values, whose meaning is determined by the projection proj.
  • Height h in GeoGridPosition[{x,y,h},proj] can be given as a numeric object in meters or as a Quantity length.
  • Height h in GeoGridPosition[{x,y,h},proj] is geodetic height, measured with respect to the reference ellipsoid.
  • GeoGridPosition[{x,y,h,t},proj] includes a time t measured in seconds since the beginning of January 1, 1900 in the GMT time zone.
  • A GeoGridPosition object with no explicit height assumes height zero with respect to the reference ellipsoid. A GeoGridPosition object with no explicit time assumes the current date.
  • GeoGridPosition[pos,proj] converts from any geographic position to a grid point, essentially computing a cartographic projection. Any of the following coordinate types can be given: GeoPosition, GeoPositionXYZ, GeoPositionENU, GeoGridPosition.
  • GeoGridPosition[GeoPosition[{lat,lon}],proj] performs the direct projection from geodetic coordinates to the projected map.
  • Conversely, GeoPosition[GeoGridPosition[{x,y},proj]] performs the inverse projection from the map to geodetic coordinates.
  • Projections can be specified in the following forms:
  • "proj"named projection with default parameter values
    {"proj","param1"->val1,"param2"->val2,…}projection with detailed parameters specified
  • Names of possible projections are given by GeoProjectionData[].
  • Default values of parameters for a particular named projection are given by GeoProjectionData[proj].
  • Values of height h and time t are preserved in projection computations.
  • GeoPosition[…][prop] gives the specified property of a geo grid position.
  • Possible properties include:
  • "AbsoluteTime"date as number of seconds since Jan 1, 1900, 00:00 GMT
    "Count"number of positions in the GeoGridPosition object
    "Data"first argument of the GeoGridPosition object
    "DateList"date list {y,m,d,h,m,s} in GMT time
    "DateObject"full date object
    "Datum"datum of the GeoGridPosition object
    "Depth"point depth: 0 for a single position, 1 for a list of them, …
    "Dimension"number of coordinates for each position
    "Elevation"numeric elevation in meters, with respect to the ellipsoid
    "GeoProjection"geo projection of the GeoGridPosition object
    "GridX"numeric x coordinate
    "GridY"numeric y coordinate
    "GridXY"numeric {x,y} pair
    "PackingType"Integer or Real if data is packed; None otherwise

Examples

open all close all

Basic Examples  (3)

Convert a geodetic position to a grid point using a spherical Bonne projection:

Convert back to a geodetic position:

Compute a spherical gnomonic projection using a custom setting for the central meridian:

Compute a projection using explicitly specified projection parameters:

Scope  (7)

Position Specification  (3)

A geo grid position object specifying projected x, y coordinates:

Specify height in meters:

Specify time as well, in seconds since 1900:

Projection from geodetic positions to a cartographic grid, using various geo projections:

Directly specify the geographic Entity object:

Conversion to GeoGridPosition  (2)

Projection from three-dimensional XYZ specifications:

Start from a geodetic position in a nondefault datum:

The projection keeps track of the datum information:

Recover the original specification:

Geo Grid Position Arrays  (1)

Use an array of points as the first argument:

All points are transformed at once:

Here each point is transformed individually:

Results coincide up to numerical error:

Coordinate Extraction  (1)

Use properties to extract information from a GeoPosition object:

Applications  (1)

Get latitude, longitude lists for the main boundaries of a country:

Convert geodetic coordinates to grid positions using the spherical Mercator projection:

Use the Cassini projection with a particular center:

Alternatively:

Properties & Relations  (3)

Gudermannian implements the inverse Mercator projection for the latitude coordinate:

Choose a location:

Parameters of the default reference ellipsoid:

Project that location on the ellipsoid using the cylindrical-aspect Mercator projection:

The result can also be obtained as:

Project the same location using the transverse-aspect Mercator projection:

The result can also be obtained by solving this equation:

And evaluating:

There is no simple relation between the projected coordinates of a point and those of its antipode:

Possible Issues  (1)

In actual applications, the "ReferenceModel" parameter of the projection will usually coincide with the datum in the third argument of GeoGridPosition, but this is not needed. For example, the standard webMercator projection uses the spherical Mercator projection, with some radius r, even though the locations are associated with a datum based on a standard reference ellipsoid. This is represented by:

Using the ellipsoidal Mercator projection gives slightly different results:

See Also

GeoProjectionData  GeoPosition  GeoPositionENU  GeoPositionXYZ  GeoGridVector  GeoAntipode  GeodesyData  CountryData  GeoGraphics  GeoProjection

Tech Notes

    ▪
  • GeoGraphics

Related Guides

    ▪
  • Geodesy
  • ▪
  • Maps & Cartography

History

Introduced in 2008 (7.0) | Updated in 2014 (10.0) ▪ 2019 (12.0)

Wolfram Research (2008), GeoGridPosition, Wolfram Language function, https://reference.wolfram.com/language/ref/GeoGridPosition.html (updated 2019).

Text

Wolfram Research (2008), GeoGridPosition, Wolfram Language function, https://reference.wolfram.com/language/ref/GeoGridPosition.html (updated 2019).

CMS

Wolfram Language. 2008. "GeoGridPosition." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/GeoGridPosition.html.

APA

Wolfram Language. (2008). GeoGridPosition. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GeoGridPosition.html

BibTeX

@misc{reference.wolfram_2025_geogridposition, author="Wolfram Research", title="{GeoGridPosition}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/GeoGridPosition.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_geogridposition, organization={Wolfram Research}, title={GeoGridPosition}, year={2019}, url={https://reference.wolfram.com/language/ref/GeoGridPosition.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English