Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
EmptySpaceF
  • See Also
    • PointStatisticFunction
    • SpatialBoundaryCorrection
    • RipleyK
    • BesagL
    • SpatialJ
    • NearestNeighborG
    • PairCorrelationG
    • RandomPoint
    • PoissonPointProcess
    • SpatialRandomnessTest
    • PointDensity
  • Related Guides
    • Spatial Point Collections
    • Descriptive Statistics
    • Spatial Point Processes
    • Spatial Statistics
    • See Also
      • PointStatisticFunction
      • SpatialBoundaryCorrection
      • RipleyK
      • BesagL
      • SpatialJ
      • NearestNeighborG
      • PairCorrelationG
      • RandomPoint
      • PoissonPointProcess
      • SpatialRandomnessTest
      • PointDensity
    • Related Guides
      • Spatial Point Collections
      • Descriptive Statistics
      • Spatial Point Processes
      • Spatial Statistics

EmptySpaceF[pdata,r]

estimates the empty space function for point data pdata at radius r.

EmptySpaceF[pproc,r]

computes for point process pproc.

EmptySpaceF[bdata,r]

computes for binned data bdata.

EmptySpaceF[pspec]

generates the function that can be applied repeatedly to different radii r.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Point Data  
Point Processes  
Options  
SpatialBoundaryCorrection  
Method  
Applications  
Properties & Relations  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • PointStatisticFunction
    • SpatialBoundaryCorrection
    • RipleyK
    • BesagL
    • SpatialJ
    • NearestNeighborG
    • PairCorrelationG
    • RandomPoint
    • PoissonPointProcess
    • SpatialRandomnessTest
    • PointDensity
  • Related Guides
    • Spatial Point Collections
    • Descriptive Statistics
    • Spatial Point Processes
    • Spatial Statistics
    • See Also
      • PointStatisticFunction
      • SpatialBoundaryCorrection
      • RipleyK
      • BesagL
      • SpatialJ
      • NearestNeighborG
      • PairCorrelationG
      • RandomPoint
      • PoissonPointProcess
      • SpatialRandomnessTest
      • PointDensity
    • Related Guides
      • Spatial Point Collections
      • Descriptive Statistics
      • Spatial Point Processes
      • Spatial Statistics

EmptySpaceF

EmptySpaceF[pdata,r]

estimates the empty space function for point data pdata at radius r.

EmptySpaceF[pproc,r]

computes for point process pproc.

EmptySpaceF[bdata,r]

computes for binned data bdata.

EmptySpaceF[pspec]

generates the function that can be applied repeatedly to different radii r.

Details and Options

  • EmptySpaceF is also known as spherical contact distribution function.
  • The function gives the probability of finding a point within distance of an arbitrary location which is typically not a point of pdata.
  •     
  • When comparing with a Poisson point process, the results are:
  •     
  • The radius r can be a single value or a list of values. With no radius r specified, EmptySpaceF returns a PointStatisticFunction that can be used to evaluate the function repeatedly.
  • The point data pdata can have the following forms:
  • {p1,p2,…}points pi
    GeoPosition[…],GeoPositionXYZ[…],…geographic points
    SpatialPointData[…]spatial point collection
    {pts,reg}point collection pts and observation region reg
  • If the observation region reg is not given, a region is automatically computed using RipleyRassonRegion.
  • The point process pproc can have the following forms:
  • proca point process proc
    {proc,reg}a point process proc and observation region reg
  • The observation region reg should be parameter free and SpatialObservationRegionQ.
  • The binned data bdata is from SpatialBinnedPointData and is treated as an InhomogeneousPoissonPointProcess with a piecewise constant intensify function.
  • For pdata, is computed by discretizing the observation region and assumes constant point intensity.
  • For pproc, is computed by using exact formulas or by simulation to generate point data.
  • The following options can be given:
  • Method Automaticwhat methods to use
    SpatialBoundaryCorrection Automaticwhat boundary correction to use
  • The following settings can be used for SpatialBoundaryCorrection:
  • Automaticautomatically determined boundary correction
    Noneno boundary correction
    "BorderMargin"use interior margin for observation region
    "Hanisch"drops points for which the distance to the nearest neighbor is greater than the distance to boundary
    "KaplanMeier"SurvivalDistribution method: the point distance to its nearest neighbor is censored by its distance to the region boundary
    "NelsonAalen"SurvivalDistribution method: the point distance to its nearest neighbor is censored by its distance to the region boundary
  • The setting Method->{"Discretization"->opts} allows for adjusting the discretization method in the estimation. Here opts can be any valid options for DiscretizeRegion.

Examples

open all close all

Basic Examples  (3)

Estimate the empty space function at a given distance:

Estimate the empty space function within a range of distances:

Visualize the result with ListPlot:

Empty space function of a cluster point process:

Scope  (7)

Point Data  (4)

Estimate the empty space function for some data at distance 0.1:

Obtain empirical estimates of the empty space function for a list of given distances:

Create a PointStatisticFunction for future use:

Compute a value at a given radius:

Estimate the empty space function without explicitly providing the observation region:

Observation region generated by Ripley–Rasson estimator:

Estimated function at distance 0.05:

Use EmptySpaceF with GeoPosition:

Plot the point statistics function:

Point Processes  (3)

The empty space function for PoissonPointProcess has closed form:

Visualize for fixed intensity and varying dimension:

The empty space function for a cluster process ThomasPointProcess with specified dimension:

In 3D:

The empty space function for a cluster process MaternPointProcess with specified dimension:

In 3D:

Options  (3)

SpatialBoundaryCorrection  (2)

The EmptySpaceF estimator without boundary correction is biased and should not be used unless with a large point set:

The default method "BorderMargin" only considers the points that are distance from the boundary:

"Hanisch" method weights each point in the observation region to make the estimated values unbiased:

"KaplanMeier" and "NelsonAalen" methods are estimators used in SurvivalDistribution. The distance of each point to its nearest neighbor point is censored by the distance of each point to the boundary of the observation region:

Compare the different edge correction methods:

Estimate the values of the empty space function with three different methods:

Visualize the results:

Method  (1)

Discretization setting can be provided under Method as suboptions:

Estimate the empty space function at the same radius with different values of MaxCellMeasure:

Use different discretization methods to estimate the empty space function at the same radius:

Applications  (3)

The empty space function for spatially random data:

Visualize the results:

The empty space function for hardcore data:

Estimate the values of the empty space function with given data:

Visualize the results:

On Monday, May 20, 2019, the Severe Prediction Center highlighted a small corridor from the northeastern part of the Texas Panhandle to central Oklahoma in a 45 percent probability of EF2–EF5 tornadoes to occur within 25 miles of a given location, which defines a value of EmptySpaceF:

Assuming uniform intensity over the region, use the Poisson point process as a tornado pattern model:

Define the Poisson point process:

Compute probabilities of a tornado within a given radius of a location:

Simulate a possible tornado spread over the state of Oklahoma:

Properties & Relations  (4)

The empty space function behaves like a CDF:

Visualize the results:

The empty space function for a PoissonPointProcess is equivalent to SurvivalFunction at 0 of PointCountDistribution on a disk of radius :

Define the point count distribution for the process on a ball of radius :

Compare its survival function at 0 with the empty space function for fixed dimensions:

In 3D:

In random dimension:

The empty space and the nearest neighbor functions of a PoissonPointProcess are identical:

In 1D they are both equivalent to the CDF of an ExponentialDistribution:

EmptySpaceF is often compared with NearestNeighborG, which estimates the probability of finding another point within distance r from a point in the point collection:

Visualize the result with ListPlot:

Compare the estimates between EmptySpaceF and NearestNeighborG for point data generated by HardcorePointProcess:

See Also

PointStatisticFunction  SpatialBoundaryCorrection  RipleyK  BesagL  SpatialJ  NearestNeighborG  PairCorrelationG  RandomPoint  PoissonPointProcess  SpatialRandomnessTest  PointDensity

Related Guides

    ▪
  • Spatial Point Collections
  • ▪
  • Descriptive Statistics
  • ▪
  • Spatial Point Processes
  • ▪
  • Spatial Statistics

History

Introduced in 2020 (12.2)

Wolfram Research (2020), EmptySpaceF, Wolfram Language function, https://reference.wolfram.com/language/ref/EmptySpaceF.html.

Text

Wolfram Research (2020), EmptySpaceF, Wolfram Language function, https://reference.wolfram.com/language/ref/EmptySpaceF.html.

CMS

Wolfram Language. 2020. "EmptySpaceF." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/EmptySpaceF.html.

APA

Wolfram Language. (2020). EmptySpaceF. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/EmptySpaceF.html

BibTeX

@misc{reference.wolfram_2025_emptyspacef, author="Wolfram Research", title="{EmptySpaceF}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/EmptySpaceF.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_emptyspacef, organization={Wolfram Research}, title={EmptySpaceF}, year={2020}, url={https://reference.wolfram.com/language/ref/EmptySpaceF.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English