Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
E
  • See Also
    • Exp
    • Log
    • Pi
    • N
    • Limit

    • Characters
    • \[ExponentialE]
  • Related Guides
    • Mathematical Constants
    • Mathematical Functions
    • Continued Fractions & Rational Approximations
  • Tech Notes
    • Some Mathematical Functions
    • Mathematical Constants
    • Implementation notes: Numerical and Related Functions
    • See Also
      • Exp
      • Log
      • Pi
      • N
      • Limit

      • Characters
      • \[ExponentialE]
    • Related Guides
      • Mathematical Constants
      • Mathematical Functions
      • Continued Fractions & Rational Approximations
    • Tech Notes
      • Some Mathematical Functions
      • Mathematical Constants
      • Implementation notes: Numerical and Related Functions

E

is the exponential constant (base of natural logarithms), with numerical value .

Details
Details and Options Details and Options
Background & Context
Examples  
Basic Examples  
Applications  
Properties & Relations  
Neat Examples  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • Exp
    • Log
    • Pi
    • N
    • Limit

    • Characters
    • \[ExponentialE]
  • Related Guides
    • Mathematical Constants
    • Mathematical Functions
    • Continued Fractions & Rational Approximations
  • Tech Notes
    • Some Mathematical Functions
    • Mathematical Constants
    • Implementation notes: Numerical and Related Functions
    • See Also
      • Exp
      • Log
      • Pi
      • N
      • Limit

      • Characters
      • \[ExponentialE]
    • Related Guides
      • Mathematical Constants
      • Mathematical Functions
      • Continued Fractions & Rational Approximations
    • Tech Notes
      • Some Mathematical Functions
      • Mathematical Constants
      • Implementation notes: Numerical and Related Functions

E

E

is the exponential constant (base of natural logarithms), with numerical value .

Details

  • Mathematical constant treated as numeric by NumericQ and as a constant by D.
  • E can be evaluated to any numerical precision using N.
  • E can be entered in StandardForm and InputForm as , ee or \[ExponentialE].
  • In StandardForm and TraditionalForm, E is printed as .

Background & Context

  • E is the symbol representing the base of the natural logarithm Log. It is also known as Euler's number and can be input as \[ExponentialE]. E has a number of equivalent definitions in mathematics, including as the infinite sum of reciprocal factorials over non-negative integers and as the limiting value . It has a numerical value . With the possible exception of Pi, E is the most important constant in mathematics. It appears in many sums, products, integrals, in equations involving the compounding of interest, in growth laws involving exponential growth or decay, and in formulas from a wide range of other mathematical and scientific fields.
  • The exponential function Exp[x] is converted to E^x. When E is used as a symbol, it is propagated as an exact quantity. Expansion and simplification of complicated expressions involving E may require use of functions such as FunctionExpand and FullSimplify.
  • Euler proved that E is irrational (meaning it cannot be expressed as a ratio of any two integers) and Hermite subsequently established that it is transcendental (meaning it is not the root of any integer polynomial). However, E is the "least" transcendental number possible since it has irrationality measure of 2. lt is not known if E is normal (meaning the digits in its base-b expansion are equally distributed) to any base. Despite its extensive appearance in various closed-form sums and integrals, E is conjectured to not be a Kontsevich–Zagier period (meaning it is not the value of an absolutely convergent integral of any univariate or multivariate rational function with rational coefficients over algebraically-specified domains in ).
  • E can be evaluated to arbitrary numerical precision using N. In fact, calculating the first million decimal digits of E takes only a fraction of a second on a modern desktop computer. RealDigits can be used to return a list of digits of E and ContinuedFraction to obtain terms of its continued fraction expansion.

Examples

open all close all

Basic Examples  (3)

E can be entered as ee (for "exponential e"):

Evaluate to any precision:

Do an exact numerical computation:

Applications  (5)

The first 20 digits of in base 10:

has a very regular continued fraction:

Evaluate symbolic relations involving :

Mathematical functions and operations often give results involving :

Solve the Steiner problem:

Properties & Relations  (5)

Exp[z] is automatically converted to z:

is not an algebraic number:

Use TrigToExp to obtain E from hyperbolic and trigonometric functions:

Find twenty base-10 digits after the millionth one:

arises in many limiting results:

Neat Examples  (1)

Weyl‐type sum involving E:

See Also

Exp  Log  Pi  N  Limit

Characters: \[ExponentialE]

Tech Notes

    ▪
  • Some Mathematical Functions
  • ▪
  • Mathematical Constants
  • ▪
  • Implementation notes: Numerical and Related Functions

Related Guides

    ▪
  • Mathematical Constants
  • ▪
  • Mathematical Functions
  • ▪
  • Continued Fractions & Rational Approximations

Related Links

  • MathWorld
  • The Wolfram Functions Site

History

Introduced in 1988 (1.0) | Updated in 1996 (3.0) ▪ 1999 (4.0) ▪ 2000 (4.1) ▪ 2002 (4.2)

Wolfram Research (1988), E, Wolfram Language function, https://reference.wolfram.com/language/ref/E.html (updated 2002).

Text

Wolfram Research (1988), E, Wolfram Language function, https://reference.wolfram.com/language/ref/E.html (updated 2002).

CMS

Wolfram Language. 1988. "E." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2002. https://reference.wolfram.com/language/ref/E.html.

APA

Wolfram Language. (1988). E. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/E.html

BibTeX

@misc{reference.wolfram_2025_e, author="Wolfram Research", title="{E}", year="2002", howpublished="\url{https://reference.wolfram.com/language/ref/E.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_e, organization={Wolfram Research}, title={E}, year={2002}, url={https://reference.wolfram.com/language/ref/E.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English