Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
DistributionFitTest
  • See Also
    • EstimatedDistribution
    • FindDistributionParameters
    • HypothesisTestData
    • LocationTest
    • VarianceTest
    • IndependenceTest
    • LogRankTest
    • AndersonDarlingTest
    • KolmogorovSmirnovTest
    • CramerVonMisesTest
    • JarqueBeraALMTest
    • KuiperTest
    • MardiaCombinedTest
    • MardiaKurtosisTest
    • MardiaSkewnessTest
    • BaringhausHenzeTest
    • PearsonChiSquareTest
    • ShapiroWilkTest
    • WatsonUSquareTest
  • Related Guides
    • Probability & Statistics with Quantities
    • Hypothesis Tests
    • Random Variables
    • Probability & Statistics
    • Reliability
    • Statistical Data Analysis
    • Scientific Data Analysis
    • Life Sciences & Medicine: Data & Computation
    • Tabular Modeling
    • See Also
      • EstimatedDistribution
      • FindDistributionParameters
      • HypothesisTestData
      • LocationTest
      • VarianceTest
      • IndependenceTest
      • LogRankTest
      • AndersonDarlingTest
      • KolmogorovSmirnovTest
      • CramerVonMisesTest
      • JarqueBeraALMTest
      • KuiperTest
      • MardiaCombinedTest
      • MardiaKurtosisTest
      • MardiaSkewnessTest
      • BaringhausHenzeTest
      • PearsonChiSquareTest
      • ShapiroWilkTest
      • WatsonUSquareTest
    • Related Guides
      • Probability & Statistics with Quantities
      • Hypothesis Tests
      • Random Variables
      • Probability & Statistics
      • Reliability
      • Statistical Data Analysis
      • Scientific Data Analysis
      • Life Sciences & Medicine: Data & Computation
      • Tabular Modeling

DistributionFitTest[data]

tests whether data is normally distributed.

DistributionFitTest[data,dist]

tests whether data is distributed according to dist.

DistributionFitTest[data,dist,"property"]

returns the value of "property".

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Testing  
Data Properties  
Reporting  
Options  
Method  
SignificanceLevel  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • EstimatedDistribution
    • FindDistributionParameters
    • HypothesisTestData
    • LocationTest
    • VarianceTest
    • IndependenceTest
    • LogRankTest
    • AndersonDarlingTest
    • KolmogorovSmirnovTest
    • CramerVonMisesTest
    • JarqueBeraALMTest
    • KuiperTest
    • MardiaCombinedTest
    • MardiaKurtosisTest
    • MardiaSkewnessTest
    • BaringhausHenzeTest
    • PearsonChiSquareTest
    • ShapiroWilkTest
    • WatsonUSquareTest
  • Related Guides
    • Probability & Statistics with Quantities
    • Hypothesis Tests
    • Random Variables
    • Probability & Statistics
    • Reliability
    • Statistical Data Analysis
    • Scientific Data Analysis
    • Life Sciences & Medicine: Data & Computation
    • Tabular Modeling
    • See Also
      • EstimatedDistribution
      • FindDistributionParameters
      • HypothesisTestData
      • LocationTest
      • VarianceTest
      • IndependenceTest
      • LogRankTest
      • AndersonDarlingTest
      • KolmogorovSmirnovTest
      • CramerVonMisesTest
      • JarqueBeraALMTest
      • KuiperTest
      • MardiaCombinedTest
      • MardiaKurtosisTest
      • MardiaSkewnessTest
      • BaringhausHenzeTest
      • PearsonChiSquareTest
      • ShapiroWilkTest
      • WatsonUSquareTest
    • Related Guides
      • Probability & Statistics with Quantities
      • Hypothesis Tests
      • Random Variables
      • Probability & Statistics
      • Reliability
      • Statistical Data Analysis
      • Scientific Data Analysis
      • Life Sciences & Medicine: Data & Computation
      • Tabular Modeling

DistributionFitTest

DistributionFitTest[data]

tests whether data is normally distributed.

DistributionFitTest[data,dist]

tests whether data is distributed according to dist.

DistributionFitTest[data,dist,"property"]

returns the value of "property".

Details and Options

  • DistributionFitTest performs a goodness-of-fit hypothesis test with null hypothesis that data was drawn from a population with distribution dist and alternative hypothesis that it was not.
  • By default, a probability value or -value is returned.
  • A small -value suggests that it is unlikely that the data came from dist.
  • The dist can be any symbolic distribution with numeric and symbolic parameters or a dataset.
  • The data can be univariate {x1,x2,…} or multivariate {{x1,y1,…},{x2,y2,…},…}.
  • DistributionFitTest[data,dist,Automatic] will choose the most powerful test that applies to data and dist for a general alternative hypothesis.
  • DistributionFitTest[data,dist,All] will choose all tests that apply to data and dist.
  • DistributionFitTest[data,dist,"test"] reports the -value according to "test".
  • Many of the tests use the CDF of the test distribution dist and the empirical CDF of the data as well as their difference and =Expectation[d(x),…]. The CDFs and should be the same under the null hypothesis .
  • The following tests can be used for univariate or multivariate distributions:
  • "AndersonDarling"distribution, databased on Expectation[]
    "CramerVonMises"distribution, databased on Expectation[d(x)2]
    "JarqueBeraALM"normalitybased on skewness and kurtosis
    "KolmogorovSmirnov"distribution, databased on sup_x TemplateBox[{{d, (, x, )}}, Abs]
    "Kuiper"distribution, databased on
    "PearsonChiSquare"distribution, databased on expected and observed histogram
    "ShapiroWilk"normalitybased on quantiles
    "WatsonUSquare"distribution, databased on Expectation[]
  • The following tests can be used for multivariate distributions:
  • "BaringhausHenze"normalitybased on empirical characteristic function
    "DistanceToBoundary"uniformitybased on distance to uniform boundaries
    "MardiaCombined"normalitycombined Mardia skewness and kurtosis
    "MardiaKurtosis"normalitybased on multivariate kurtosis
    "MardiaSkewness"normalitybased on multivariate skewness
    "SzekelyEnergy"databased on Newton's potential energy
  • DistributionFitTest[data,dist,"property"] can be used to directly give the value of "property".
  • Properties related to the reporting of test results include:
  • "AllTests"list of all applicable tests
    "AutomaticTest"test chosen if Automatic is used
    "DegreesOfFreedom"the degrees of freedom used in a test
    "PValue"list of -values
    "PValueTable"formatted table of -values
    "ShortTestConclusion"a short description of the conclusion of a test
    "TestConclusion"a description of the conclusion of a test
    "TestData"list of pairs of test statistics and -values
    "TestDataTable"formatted table of -values and test statistics
    "TestStatistic"list of test statistics
    "TestStatisticTable"formatted table of test statistics
    "HypothesisTestData"returns a HypothesisTestData object
  • DistributionFitTest[data,dist,"HypothesisTestData"] returns a HypothesisTestData object htd that can be used to extract additional test results and properties using the form htd["property"].
  • Properties related to the data distribution include:
  • "FittedDistribution"fitted distribution of data
    "FittedDistributionParameters"distribution parameters of data
  • The following options can be given:
  • Method Automaticthe method to use for computing -values
    SignificanceLevel 0.05cutoff for diagnostics and reporting
  • For a test for goodness of fit, a cutoff is chosen such that is rejected only if . The value of used for the "TestConclusion" and "ShortTestConclusion" properties is controlled by the SignificanceLevel option. By default, is set to 0.05.
  • With the setting Method->"MonteCarlo", datasets of the same length as the input si are generated under using the fitted distribution. The EmpiricalDistribution from DistributionFitTest[si,dist,{"TestStatistic",test}] is then used to estimate the -value.

Examples

open all close all

Basic Examples  (3)

Test some data for normality:

Create a HypothesisTestData object for further property extraction:

The full test table:

Compare the histogram of the data to the PDF of the test distribution:

Test the fit of a set of data to a particular distribution:

Extract the Anderson–Darling test table:

Verify the test results with ProbabilityPlot:

Test data for goodness of fit to a multivariate distribution:

Plot the marginal PDFs of the test distribution against the data to confirm the test results:

Scope  (22)

Testing  (16)

Test some data for normality:

The -values for the normally distributed data are typically large:

The -values for data that is not normally distributed are typically small:

Set the third argument to Automatic to apply a generally powerful and appropriate test:

The property "AutomaticTest" can be used to determine which test was chosen:

Test whether data fits a particular distribution:

There is insufficient evidence to reject a good fit to a WeibullDistribution[1,2]:

Test for goodness of fit to a derived distribution:

The -value is large for the mixture data compared to data not drawn from the mixture:

Test for goodness of fit for quantity data:

Check for normality:

Check goodness-of-fit for a specific distribution:

Test for goodness of fit to a formula-based distribution:

Unspecified parameters will be estimated from the data:

The -value is dependent on which parameters were estimated:

Test some data for multivariate normality:

The -values for normally distributed data are typically large compared to non-normal data:

Test some data for goodness of fit to a particular multivariate distribution:

Test a MultinormalDistribution and multivariate UniformDistribution, respectively:

Compare the distributions of two datasets:

The sample sizes need not be equal:

Compare the distributions of two multivariate datasets:

The -values for equally distributed data are large compared to unequally distributed data:

Perform a particular goodness-of-fit test:

Any number of tests can be performed simultaneously:

Perform all tests, appropriate to the data and distribution, simultaneously:

Use the property "AllTests" to identify which tests were used:

Create a HypothesisTestData object for repeated property extraction:

The properties available for extraction:

Extract some properties from a HypothesisTestData object:

The -value and test statistic from a Cramér–von Mises test:

Extract any number of properties simultaneously:

The results from the Anderson–Darling -value and test statistic:

Data Properties  (2)

Obtain the fitted distribution when parameters have been unspecified:

Extract the parameters from the fitted distribution:

Plot the PDF of the fitted distribution against the data:

Confirm the fit with a goodness-of-fit test:

The test distribution is returned when the parameters have been specified:

Visually compare the data to the fitted distribution:

Reporting  (4)

Tabulate the results from a selection of tests:

A full table of all appropriate test results:

A table of selected test results:

Retrieve the entries from a test table for customized reporting:

The -values are above 0.05, so there is not enough evidence to reject normality at that level:

Tabulate -values for a test or group of tests:

The -value from the table:

A table of -values from all appropriate tests:

A table of -values from a subset of tests:

Report the test statistic from a test or group of tests:

The test statistic from the table:

A table of test statistics from all appropriate tests:

Options  (6)

Method  (4)

Use Monte Carlo-based methods, or choose the fastest method automatically:

Set the number of samples to use for Monte Carlo-based methods:

The Monte Carlo estimate converges to the true -value with increasing samples:

Set the random seed used in Monte Carlo-based methods:

The seed affects the state of the generator and has some effect on the resulting -value:

Monte Carlo simulations generate many test statistics under :

The estimated distribution of the test statistics under :

The empirical estimate of the -value agrees with the Monte Carlo estimate:

SignificanceLevel  (2)

By default, a significance level of 0.05 is used:

Set the significance level to 0.001:

The significance level is also used for "ShortTestConclusion":

Applications  (12)

Analyze whether a dataset is drawn from a normal distribution:

Perform a series of goodness-of-fit tests:

Visually compare the empirical and theoretical CDFs in a QuantilePlot:

Visually compare the empirical CDF to that of the test distribution:

Determine whether snowfall accumulations in Buffalo are normally distributed:

Use the Jarque–Bera ALM test and Shapiro–Wilk test to assess normality:

The SmoothHistogram agrees with the test results:

The QuantilePlot suggests a reasonably good fit:

Use a goodness-of-fit test to verify the fit suggested by visualization such as a histogram:

The Kolmogorov–Smirnov test agrees with the good fit suggested in the histogram:

Test whether the absolute magnitudes of the 100 brightest stars are normally distributed:

The value of the statistic and p-value for the automatic test:

Visually check the result:

Test whether multivariate data is uniformly distributed over a box:

Use the distance-to-boundary test:

Use Szekely's energy test to compare two multivariate datasets:

The distributions for measures of counterfeit and genuine notes are significantly different:

Visually compare the marginal distributions to determine the origin of the discrepancy:

Test whether data is uniformly distributed on a unit circle:

Kuiper's test and the Watson test are useful for testing uniformity on a circle:

The first dataset is randomly distributed, the second is clustered:

Determine if a model is appropriate for day-to-day point changes in the S&P 500 index:

The histogram suggests a heavy-tailed, symmetric distribution:

Try a LaplaceDistribution:

For very large datasets, small deviations from the test distribution are readily detected:

Test the residuals from a LinearModelFit for normality:

The Shapiro–Wilk test suggests that the residuals are not normally distributed:

The QuantilePlot suggests large deviations in the left tail of the distribution:

Simulate the distribution of a test statistic to obtain a Monte Carlo -value:

Visualize the distribution of the test statistic using SmoothHistogram:

Obtain the Monte Carlo -value from an Anderson–Darling test:

Compare with the -value returned by DistributionFitTest:

Obtain an estimate of the power for a hypothesis test:

Visualize the approximate power curve:

Estimate the power of the Shapiro–Wilk test when the underlying distribution is a StudentTDistribution[2], the test size is 0.05, and the sample size is 35:

Smoothing a dataset using kernel density estimation can remove noise while preserving the structure of the underlying distribution of the data. Here two datasets are created from the same distribution:

The unsmoothed data provides a noisy estimate of the underlying distributions:

Noise would lead to committing a type I error:

Smoothing reduces the noise and results in a correct conclusion at the 5% level:

Properties & Relations  (16)

By default, univariate data is compared to a NormalDistribution:

The parameters of the distribution are estimated from the data:

Multivariate data is compared to a MultinormalDistribution by default:

Unspecified parameters of the distribution are estimated from the data:

Maximum likelihood estimates are used for unspecified parameters of the test distribution:

The -value suggests the expected proportion of false positives (type I errors):

Setting the size of a test to 0.05 results in an erroneous rejection of about 5% of the time:

Type II errors arise when is not rejected, given it is false:

Increasing the size of the test lowers the type II error rate:

The -value for a valid test has a UniformDistribution[{0,1}] under :

Verify the uniformity using the Kolmogorov–Smirnov test:

The power of each test is the probability of rejecting when it is false:

Under these conditions, the Pearson test has the lowest power:

The power of each test decreases with sample size:

Some tests perform better than others with small sample sizes:

Some tests are more powerful than others for detecting differences in location:

The power of the tests:

Some tests are more powerful than others for detecting differences in scale:

The power of the tests:

The Pearson test requires large sample sizes to have high power:

The power of the tests:

Some tests perform better than others when testing normality:

The Jarque–Bera ALM and Shapiro–Wilk tests are the most powerful for small samples:

Tests designed for the composite hypothesis of normality ignore specified parameters:

Different tests examine different properties of the distribution. Conclusions based on a particular test may not always agree with those based on another test:

The green region represents a correct conclusion by both tests. Points fall in the red region when a type II error is committed by both tests. The gray region shows where the tests disagree:

Estimating parameters prior to testing affects the distribution of the test statistic:

The distribution of the test statistics and resulting -values under :

Failing to account for the estimation leads to an overestimate of -values:

The distribution fit test works with the values only when the input is a TimeSeries:

Possible Issues  (5)

Some tests require that the parameters be prespecified and not estimated for valid -values:

It is usually possible to use Monte Carlo methods to arrive at a valid -value:

For many distributions, corrections are applied when parameters are estimated:

The Jarque–Bera ALM test must have sample sizes of at least 10 for valid -values:

Use Monte Carlo methods to arrive at a valid -value:

The Kolmogorov–Smirnov test and Kuiper's test expect no ties in the data:

The Jarque–Bera ALM test and Shapiro–Wilk test are only valid for testing normality:

Careful interpretation is required when some tests are used for discrete distributions:

The Pearson test applies directly for discrete distributions:

Neat Examples  (1)

The distributions of some test statistics:

See Also

EstimatedDistribution  FindDistributionParameters  HypothesisTestData  LocationTest  VarianceTest  IndependenceTest  LogRankTest  AndersonDarlingTest  KolmogorovSmirnovTest  CramerVonMisesTest  JarqueBeraALMTest  KuiperTest  MardiaCombinedTest  MardiaKurtosisTest  MardiaSkewnessTest  BaringhausHenzeTest  PearsonChiSquareTest  ShapiroWilkTest  WatsonUSquareTest

Related Guides

    ▪
  • Probability & Statistics with Quantities
  • ▪
  • Hypothesis Tests
  • ▪
  • Random Variables
  • ▪
  • Probability & Statistics
  • ▪
  • Reliability
  • ▪
  • Statistical Data Analysis
  • ▪
  • Scientific Data Analysis
  • ▪
  • Life Sciences & Medicine: Data & Computation
  • ▪
  • Tabular Modeling

History

Introduced in 2010 (8.0) | Updated in 2014 (10.0) ▪ 2015 (10.2)

Wolfram Research (2010), DistributionFitTest, Wolfram Language function, https://reference.wolfram.com/language/ref/DistributionFitTest.html (updated 2015).

Text

Wolfram Research (2010), DistributionFitTest, Wolfram Language function, https://reference.wolfram.com/language/ref/DistributionFitTest.html (updated 2015).

CMS

Wolfram Language. 2010. "DistributionFitTest." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/DistributionFitTest.html.

APA

Wolfram Language. (2010). DistributionFitTest. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DistributionFitTest.html

BibTeX

@misc{reference.wolfram_2025_distributionfittest, author="Wolfram Research", title="{DistributionFitTest}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/DistributionFitTest.html}", note=[Accessed: 04-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_distributionfittest, organization={Wolfram Research}, title={DistributionFitTest}, year={2015}, url={https://reference.wolfram.com/language/ref/DistributionFitTest.html}, note=[Accessed: 04-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English