Nitroguanidine
|
| |||
| Names | |||
|---|---|---|---|
| IUPAC name
1-Nitroguanidine
| |||
| Other names
Picrite
| |||
| Identifiers | |||
3D model (JSmol)
|
|||
| 03, 126 | |||
| ChEBI | |||
| ChemSpider | |||
| ECHA InfoCard | 100.008.313 | ||
PubChem CID
|
|||
| RTECS number |
| ||
| UNII | |||
CompTox Dashboard (EPA)
|
|||
| |||
| |||
| Properties | |||
| (NH2)2CNNO2 | |||
| Molar mass | 104.069 g·mol−1 | ||
| Appearance | Colorless crystalline solid | ||
| Density | 1.77 g/cm3 | ||
| Melting point | 239 °C (462 °F; 512 K)[4] decomposes | ||
| |||
| Solubility in Sulfuric acid | 10.9 g/100mL (45% H2SO4)[1] | ||
| Acidity (pKa) | 12.2 (in 1 M NaCl at 24 °C (75 °F; 297 K))[2] | ||
| Basicity (pKb) | 15[3] | ||
| Explosive data[1] | |||
| Shock sensitivity |
| ||
| Friction sensitivity | Insensitive | ||
| Detonation velocity |
| ||
| RE factor | 1.01 (Trauzl test) | ||
| Hazards | |||
| Occupational safety and health (OHS/OSH): | |||
Main hazards
|
Explosive when dry. | ||
| GHS labelling:(Stabilized with 25% water)[4] | |||
| Danger | |||
| H228 | |||
| P210, P240, P241, P280, P370+P378 | |||
| NFPA 704 (fire diamond) | |||
Threshold limit value (TLV)
|
7 mg/m3[4] (TWA) | ||
| Lethal dose or concentration (LD, LC): | |||
LD50 (median dose)
|
10200 mg/kg (oral, rat)[5] | ||
| Related compounds | |||
Related compounds
|
|||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
| |||
Nitroguanidine - sometimes abbreviated NQ or NGu - is a colorless, crystalline solid that decomposes at 239 °C (462 °F), without melting. Nitroguanidine is an extremely insensitive but powerful high explosive. Nitroguanidine is used as an energetic material (propellant or high explosive), precursor for insecticides,[citation needed] and for other purposes.
Manufacture
[edit]Nitroguanidine is produced worldwide on a large scale starting with the reaction of dicyandiamide (DCD) with ammonium nitrate to afford the salt guanidinium nitrate, which is then nitrated by treatment with concentrated sulfuric acid at low temperature.[6]
- [C(NH2)3]NO3 → (NH2)2CNNO2 + H2O
The guanidinium nitrate intermediate may also be produced via the Boatright–Mackay–Roberts (BMR) process, in which molten urea is reacted with molten ammonium nitrate in the presence of silica gel.[6][7] This process had been commercialized because of its attractive economic features.
- 2 NH2CONH2 + NH4NO3 → [C(NH2)3]NO3 + 2 NH3 + CO2
Uses
[edit]Explosives
[edit]Nitroguanidine has been in use since the 1930s as an ingredient in triple-base gun propellants in which it reduces flame temperature, muzzle flash, and erosion of the gun barrel but preserves chamber pressure due to high nitrogen content. Its extreme insensitivity combined with low cost has made it a popular ingredient in insensitive high explosive formulations (e.g AFX-453, AFX-760, IMX-101, AL-IMX-101, IMX-103, etc.).[8]
The first triple-base propellant, featuring 20-25% of nitroguanidine and 30-45% nitroglycerine, was developed at the Dynami Nobel factory at Avigliana and patented by its director Dr. Modesto Abelli (1859-1911) in 1905.[9][10]
Nitroguanidine's explosive decomposition may be given by the following idealized equation:[citation needed]
- 3 O2N−N=C(NH2)2 → 3 CO2 + 4 N2 + 4 NH3
Pesticides
[edit]Nitroguanidine derivatives are used as insecticides, having a comparable effect to nicotine. Derivatives include clothianidin, dinotefuran, imidacloprid, and thiamethoxam.
Structure
[edit]It has been confirmed by NMR spectroscopy, and both x-ray and neutron diffraction that nitroguanidine exclusively exists as the nitroimine tautomer both in solid state and solution.[11][12][13]
Related compounds
[edit]The methylated and nitrosylated derivative methylnitronitrosoguanidine is used to mutagenize bacterial cells for biochemical studies.[citation needed]
References
[edit]- ^ a b c Fedoroff, Basil T.; Sheffield, Oliver E. (1 January 1974). "N - Nitroguanidine". Encyclopedia of Explosives and Related Items (PDF) (Technical report). Vol. 6, Etagenguss to Gyroscopic Movement of Projectiles. Picatinny Arsenal, Dover, NJ: U.S. Army Research and Development Command TACOM - Ardec Warheads, Energetics and Combat Support Center. p. G155-6. LCCN 61-61759. ADA011845, PATR2700.
- ^ DeVries, John E.; Gantz, E. St. Clair (February 1954). "Spectrophotometric Studies of Dissociation Constants of Nitroguanidines, Triazoles and Tetrazoles". Journal of the American Chemical Society. 76 (4): 1008–1010. Bibcode:1954JAChS..76.1008D. doi:10.1021/ja01633a019.
- ^ Hall, Lila M.; De Vries, John E.; Gantz, E. St. Clair (December 1955). "Basic Equilibrium Constants of Nitroguanidine and Nitroaminoguanidine". Journal of the American Chemical Society. 77 (24): 6507–6508. Bibcode:1955JAChS..77.6507H. doi:10.1021/ja01629a024.
- ^ a b c Sigma-Aldrich Co., Nitroguanidine (desensitized). Retrieved on 10 December 2025.
- ^ a b "SDS - Nitroguanidine" (PDF). datasheets.scbt.com. 2.2. Santa Cruz Biotechnology. 30 March 2017. p. 1. Retrieved 10 December 2025.
- ^ a b Koch, Ernst-Christian (2019). "Insensitive High Explosives: III. Nitroguanidine – Synthesis – Structure – Spectroscopy – Sensitiveness". Propellants, Explosives, Pyrotechnics. 44 (3): 267–292. doi:10.1002/prep.201800253. ISSN 0721-3115.
- ^ Steele, N. W.; Doyle, J. A.; Whippen, M. G.; Gorton, J. A.; Hercules Inc. (December 1973). Process Engineering Design for Manufacture of Guanidine Nitrate (Technical report). Picatinny Arsenal. AD-772074.
- ^ Koch, Ernst-Christian (August 2019). "Insensitive high explosives: IV. Nitroguanidine – Initiation & detonation". Defence Technology. 15 (4): 467–487. doi:10.1016/j.dt.2019.05.009.
- ^ Fedoroff, Basil T.; Sheffield, Oliver E.; Clift, George D.; Reese, Earl F.; Aaronson, Henry A.; Dunkle, Cyrus G.; Walter, Hans; McLean, Dan C. (1960). "A - Abelli, Modesto". Encyclopedia of Explosives and Related Items (PDF) (Technical report). Vol. 1, A through Azoxy. Picatinny Arsenal, NJ: U.S. Army Research and Development Command TACOM - Ardec Warheads, Energetics and Combat Support Center. p. A2. LCCN 61-61759. AD0257189, PATR2700.
- ^ U.S. patent 899855A
- ^ Bulusu, S.; Dudley, R. L.; Autera, J. R. (1987). "Structure of nitroguanidine: nitroamine or nitroimine? New NMR evidence from nitrogen-15 labeled sample and nitrogen-15 spin coupling constants". Magnetic Resonance in Chemistry. 25 (3): 234–238. doi:10.1002/mrc.1260250311. S2CID 97416890.
- ^ Murmann, R. K.; Glaser, Rainer; Barnes, Charles L. (2005). "Structures of nitroso- and nitroguanidine x-ray crystallography and computational analysis". Journal of Chemical Crystallography. 35 (4): 317–325. Bibcode:2005JCCry..35..317M. doi:10.1007/s10870-005-3252-y. S2CID 96090647.
- ^ Choi, C. S. (15 October 1981). "Refinement of 2-nitroguanidine by neutron powder diffraction". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 37 (10): 1955–1957. Bibcode:1981AcCrB..37.1955C. doi:10.1107/S0567740881007735.


