Global assessment of oil and gas methane ultra-emitters
Ultra smart
Methane emissions from oil and gas production and transmission make a significant contribution to climate change. Lauvaux et al. used observations from the satellite platform TROPOMI to quantify very large releases of atmospheric methane by oil and gas industry ultra-emitters (see the Perspective by Vogel). They calculate that these sources represent as much as 12% of global methane emissions from oil and gas production and transmission and note that mitigation of their emissions can be done at low cost. This would be an effective strategy to economically reduce the contribution of this industry to climate change. —HJS
Abstract
Methane emissions from oil and gas (O&G) production and transmission represent a considerable contribution to climate change. These emissions comprise sporadic releases of large amounts of methane during maintenance operations or equipment failures not accounted for in current inventory estimates. We collected and analyzed hundreds of very large releases from atmospheric methane images sampled by the TROPOspheric Monitoring Instrument (TROPOMI) between 2019 and 2020. Ultra-emitters are primarily detected over the largest O&G basins throughout the world. With a total contribution equivalent to 8 to 12% (~8 million metric tons of methane per year) of the global O&G production methane emissions, mitigation of ultra-emitters is largely achievable at low costs and would lead to robust net benefits in billions of US dollars for the six major O&G-producing countries when considering societal costs of methane.
Get full access to this article
View all available purchase options and get full access to this article.
Supplementary Materials
This PDF file includes:
References and Notes
1
M. Saunois, A. R. Stavert, B. Poulter, P. Bousquet, J. G. Canadell, R. B. Jackson, P. A. Raymond, E. J. Dlugokencky, S. Houweling, P. K. Patra, P. Ciais, V. K. Arora, D. Bastviken, P. Bergamaschi, D. R. Blake, G. Brailsford, L. Bruhwiler, K. M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P. M. Crill, K. Covey, C. L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M. I. Hegglin, L. Höglund-Isaksson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K. M. Jensen, F. Joos, T. Kleinen, P. B. Krummel, R. L. Langenfelds, G. G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K. C. McDonald, J. McNorton, P. A. Miller, J. R. Melton, I. Morino, J. Müller, F. Murguia-Flores, V. Naik, Y. Niwa, S. Noce, S. O’Doherty, R. J. Parker, C. Peng, S. Peng, G. P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W. J. Riley, J. A. Rosentreter, A. Segers, I. J. Simpson, H. Shi, S. J. Smith, L. P. Steele, B. F. Thornton, H. Tian, Y. Tohjima, F. N. Tubiello, A. Tsuruta, N. Viovy, A. Voulgarakis, T. S. Weber, M. van Weele, G. R. van der Werf, R. F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Q. Zhu, Q. Zhu, Q. Zhuang, The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).
2
R. B. Jackson, M. Saunois, P. Bousquet, J. G. Canadell, B. Poulter, A. R. Stavert, P. Bergamaschi, Y. Niwa, A. Segers, A. Tsuruta, Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 15, 071002 (2020).
3
S. Kirschke, P. Bousquet, P. Ciais, M. Saunois, J. G. Canadell, E. J. Dlugokencky, P. Bergamaschi, D. Bergmann, D. R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E. L. Hodson, S. Houweling, B. Josse, P. J. Fraser, P. B. Krummel, J.-F. Lamarque, R. L. Langenfelds, C. Le Quéré, V. Naik, S. O’Doherty, P. I. Palmer, I. Pison, D. Plummer, B. Poulter, R. G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D. T. Shindell, I. J. Simpson, R. Spahni, L. P. Steele, S. A. Strode, K. Sudo, S. Szopa, G. R. van der Werf, A. Voulgarakis, M. van Weele, R. F. Weiss, J. E. Williams, G. Zeng, Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).
4
E. G. Nisbet, E. J. Dlugokencky, P. Bousquet, Atmospheric science. Methane on the rise—Again. Science 343, 493–495 (2014).
5
M. Saunois, P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J. G. Canadell, E. J. Dlugokencky, G. Etiope, D. Bastviken, S. Houweling, G. Janssens-Maenhout, F. N. Tubiello, S. Castaldi, R. B. Jackson, M. Alexe, V. K. Arora, D. J. Beerling, P. Bergamaschi, D. R. Blake, G. Brailsford, V. Brovkin, L. Bruhwiler, C. Crevoisier, P. Crill, K. Covey, C. Curry, C. Frankenberg, N. Gedney, L. Höglund-Isaksson, M. Ishizawa, A. Ito, F. Joos, H.-S. Kim, T. Kleinen, P. Krummel, J.-F. Lamarque, R. Langenfelds, R. Locatelli, T. Machida, S. Maksyutov, K. C. McDonald, J. Marshall, J. R. Melton, I. Morino, V. Naik, S. O’Doherty, F.-J. W. Parmentier, P. K. Patra, C. Peng, S. Peng, G. P. Peters, I. Pison, C. Prigent, R. Prinn, M. Ramonet, W. J. Riley, M. Saito, M. Santini, R. Schroeder, I. J. Simpson, R. Spahni, P. Steele, A. Takizawa, B. F. Thornton, H. Tian, Y. Tohjima, N. Viovy, A. Voulgarakis, M. van Weele, G. R. van der Werf, R. Weiss, C. Wiedinmyer, D. J. Wilton, A. Wiltshire, D. Worthy, D. Wunch, X. Xu, Y. Yoshida, B. Zhang, Z. Zhang, Q. Zhu, The global methane budget 2000–2012. Earth Syst. Sci. Data 8, 697–751 (2016).
6
M. Rigby, S. A. Montzka, R. G. Prinn, J. W. C. White, D. Young, S. O’Doherty, M. F. Lunt, A. L. Ganesan, A. J. Manning, P. G. Simmonds, P. K. Salameh, C. M. Harth, J. Mühle, R. F. Weiss, P. J. Fraser, L. P. Steele, P. B. Krummel, A. McCulloch, S. Park, Role of atmospheric oxidation in recent methane growth. Proc. Natl. Acad. Sci. U.S.A. 114, 5373–5377 (2017).
7
Y. Zhao, M. Saunois, P. Bousquet, X. Lin, A. Berchet, M. I. Hegglin, J. G. Canadell, R. B. Jackson, E. J. Dlugokencky, R. L. Langenfelds, M. Ramonet, D. Worthy, B. Zheng, Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets. Atmos. Chem. Phys. 20, 9525–9546 (2020).
8
E. G. Nisbet, M. R. Manning, E. J. Dlugokencky, R. E. Fisher, D. Lowry, S. E. Michel, C. L. Myhre, S. M. Platt, G. Allen, P. Bousquet, R. Brownlow, M. Cain, J. L. France, O. Hermansen, R. Hossaini, A. E. Jones, I. Levin, A. C. Manning, G. Myhre, J. A. Pyle, B. H. Vaughn, N. J. Warwick, J. W. C. White, Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for the Paris Agreement. Global Biogeochem. Cycles 33, 318–342 (2019).
9
B. Hmiel, V. V. Petrenko, M. N. Dyonisius, C. Buizert, A. M. Smith, P. F. Place, C. Harth, R. Beaudette, Q. Hua, B. Yang, I. Vimont, S. E. Michel, J. P. Severinghaus, D. Etheridge, T. Bromley, J. Schmitt, X. Faïn, R. F. Weiss, E. Dlugokencky, Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions. Nature 578, 409–412 (2020).
10
IEA, “Methane Tracker 2021” (IEA, 2021); www.iea.org/reports/methane-tracker-2021.
11
E. G. Nisbet, R. E. Fisher, D. Lowry, J. L. France, G. Allen, S. Bakkaloglu, T. J. Broderick, M. Cain, M. Coleman, J. Fernandez, G. Forster, P. T. Griffiths, C. P. Iverach, B. F. J. Kelly, M. R. Manning, P. B. R. Nisbet-Jones, J. A. Pyle, A. Townsend-Small, A. al-Shalaan, N. Warwick, G. Zazzeri, Methane mitigation: methods to reduce emissions, on the path to the Paris Agreement. Rev. of Geophys. 58, e2019RG000675 (2020).
12
V. A. Kuuskraa et al., EIA, “Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States” (EIA report, United States Energy Information Administration 2013); www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf.
13
R. A. Alvarez, D. Zavala-Araiza, D. R. Lyon, D. T. Allen, Z. R. Barkley, A. R. Brandt, K. J. Davis, S. C. Herndon, D. J. Jacob, A. Karion, E. A. Kort, B. K. Lamb, T. Lauvaux, J. D. Maasakkers, A. J. Marchese, M. Omara, S. W. Pacala, J. Peischl, A. L. Robinson, P. B. Shepson, C. Sweeney, A. Townsend-Small, S. C. Wofsy, S. P. Hamburg, Assessment of methane emissions from the U.S. oil and gas supply chain. Science 361, 186–188 (2018).
14
C. Frankenberg, A. K. Thorpe, D. R. Thompson, G. Hulley, E. A. Kort, N. Vance, J. Borchardt, T. Krings, K. Gerilowski, C. Sweeney, S. Conley, B. D. Bue, A. D. Aubrey, S. Hook, R. O. Green, Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region. Proc. Natl. Acad. Sci. U.S.A. 113, 9734–9739 (2016).
15
R. M. Duren, A. K. Thorpe, K. T. Foster, T. Rafiq, F. M. Hopkins, V. Yadav, B. D. Bue, D. R. Thompson, S. Conley, N. K. Colombi, C. Frankenberg, I. B. McCubbin, M. L. Eastwood, M. Falk, J. D. Herner, B. E. Croes, R. O. Green, C. E. Miller, California’s methane super-emitters. Nature 575, 180–184 (2019).
16
D. H. Cusworth, R. M. Duren, A. K. Thorpe, W. Olson-Duvall, J. Heckler, J. W. Chapman, M. L. Eastwood, M. C. Helmlinger, R. O. Green, G. P. Asner, P. E. Dennison, C. E. Miller, Intermittency of large methane emitters in the Permian Basin. Environ. Sci. Technol. Lett. 8, 567–573 (2021).
17
D. Zavala-Araiza, D. R. Lyon, R. A. Alvarez, K. J. Davis, R. Harriss, S. C. Herndon, A. Karion, E. A. Kort, B. K. Lamb, X. Lan, A. J. Marchese, S. W. Pacala, A. L. Robinson, P. B. Shepson, C. Sweeney, R. Talbot, A. Townsend-Small, T. I. Yacovitch, D. J. Zimmerle, S. P. Hamburg, Reconciling divergent estimates of oil and gas methane emissions. Proc. Natl. Acad. Sci. U.S.A. 112, 15597–15602 (2015).
18
D. Zavala-Araiza, R. A. Alvarez, D. R. Lyon, D. T. Allen, A. J. Marchese, D. J. Zimmerle, S. P. Hamburg, Super-emitters in natural gas infrastructure are caused by abnormal process conditions. Nat. Commun. 8, 14012 (2017).
19
A. Karion, C. Sweeney, E. A. Kort, P. B. Shepson, A. Brewer, M. Cambaliza, S. A. Conley, K. Davis, A. Deng, M. Hardesty, S. C. Herndon, T. Lauvaux, T. Lavoie, D. Lyon, T. Newberger, G. Pétron, C. Rella, M. Smith, S. Wolter, T. I. Yacovitch, P. Tans, Aircraft-based estimate of total methane emissions from the Barnett Shale region. Environ. Sci. Technol. 49, 8124–8131 (2015).
20
D. R. Lyon, B. Hmiel, R. Gautam, M. Omara, K. Roberts, Z. R. Barkley, K. J. David, N. L. Miles, V. C. Monteiro, S. J. Richardson, S. Conley, M. L. Smith, D. J. Jacob, L. Shen, D. J. Varon, A. Deng, X. Rudelis, N. Sharma, K. T. Story, A. R. Brandt, M. Kang, E. A. Kort, A. J. Marchese, S. P. Hamburg, Concurrent variation in oil and gas methane emissions and oil price during the COVID-19 pandemic. Atmos. Chem. Phys. 21, 6605–6626 (2021).
21
E. Chan, D. E. J. Worthy, D. Chan, M. Ishizawa, M. D. Moran, A. Delcloo, F. Vogel, Eight-Year Estimates of Methane Emissions from Oil and Gas Operations in Western Canada Are Nearly Twice Those Reported in Inventories. Environ. Sci. Technol. 54, 14899–14909 (2020).
22
J. D. Maasakkers, D. J. Jacob, M. P. Sulprizio, T. R. Scarpelli, H. Nesser, J.-X. Sheng, Y. Zhang, M. Hersher, A. A. Bloom, K. W. Bowman, J. R. Worden, G. Janssens-Maenhout, R. J. Parker, Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmos. Chem. Phys. 19, 7859–7881 (2019).
23
J. Veefkind, I. Aben, K. McMullan, H. Förster, J. de Vries, G. Otter, J. Claas, H. J. Eskes, J. F. de Haan, Q. Kleipool, M. van Weele, O. Hasekamp, R. Hoogeveen, J. Landgraf, R. Snel, P. Tol, P. Ingmann, R. Voors, B. Kruizinga, R. Vink, H. Visser, P. F. Levelt, TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 120, 70–83 (2012).
24
S. Pandey, R. Gautam, S. Houweling, H. Denier van der Gon, P. Sadavarte, T. Borsdorff, O. Hasekamp, J. Landgraf, P. Tol, T. van Kempen, R. Hoogeveen, R. van Hees, S. P. Hamburg, J. D. Maasakkers, I. Aben, Satellite observations reveal extreme methane leakage from a natural gas well blowout. Proc. Natl. Acad. Sci. U.S.A. 116, 26376–26381 (2019).
25
O. Schneising, M. Buchwitz, M. Reuter, S. Vanselow, H. Bovensmann, J. P. Burrows, Remote sensing of methane leakage from natural gas and petroleum systems revisited. Atmos. Chem. Phys. 20, 9169–9182 (2020).
26
J. Barré, I. Aben, A. Agustí-Panareda, G. Balsamo, N. Bousserez, P. Dueben, R. Engelen, A. Inness, A. Lorente, J. McNorton, V.-H. Peuch, G. Radnoti, R. Ribas, Systematic detection of local CH4 anomalies by combining satellite measurements with high-resolution forecasts. Atmos. Chem. Phys. 21, 5117–5136 (2021).
27
E. N. Mayfield, A. L. Robinson, J. L. Cohon, System-wide and superemitter policy options for the abatement of methane emissions from the US natural gas system. Environ. Sci. Technol. 51, 4772–4780 (2017).
28
H. Hu, J. Landgraf, R. Detmers, T. Borsdorff, J. Aan de Brugh, I. Aben, A. Butz, O. Hasekamp, Toward global mapping of methane with TROPOMI: First results and intersatellite comparison to GOSAT. Geophys. Res. Lett. 45, 3682–3689 (2018).
29
D. J. Varon, D. J. Jacob, J. McKeever, D. Jervis, B. O. A. Durak, Y. Xia, Y. Huang, Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes. Atmos. Meas. Tech. 11, 5673–5686 (2018).
30
A. Stein, R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, F. Ngan, NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015).
31
Student. On the error of counting with a haemacytometer. Biometrika 5, 351–360 (1907).
32
J. A. de Gouw, J. P. Veefkind, E. Roosenbrand, B. Dix, J. C. Lin, J. Landgraf, P. F. Levelt, Daily satellite observations of methane from oil and gas production regions in the United States. Sci. Rep. 10, 1379 (2020).
33
Y. Zhang, R. Gautam, S. Pandey, M. Omara, J. D. Maasakkers, P. Sadavarte, D. Lyon, H. Nesser, M. P. Sulprizio, D. J. Varon, R. Zhang, S. Houweling, D. Zavala-Araiza, R. A. Alvarez, A. Lorente, S. P. Hamburg, I. Aben, D. J. Jacob, Quantifying methane emissions from the largest oil-producing basin in the United States from space. Sci. Adv. 6, eaaz5120 (2020).
34
M. Omara, M. R. Sullivan, X. Li, R. Subramanian, A. L. Robinson, A. A. Presto, Methane emissions from conventional and unconventional natural gas production sites in the Marcellus Shale Basin. Environ. Sci. Technol. 50, 2099–2107 (2016).
35
S. Conley, G. Franco, I. Faloona, D. R. Blake, J. Peischl, T. B. Ryerson, Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA. Science 351, 1317–1320 (2016).
36
E. P. A. Global, “Non-CO2 Greenhouse Gas Emission Projections & Mitigation Potential: 2015-2050” (United States Environmental Protection Agency, 2019).
37
L. Höglund-Isaksson, A. Gómez-Sanabria, Z. Klimont, P. Rafaj, W. Schöpp, Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe–results from the GAINS model. Environ. Res. Commun. 2, 025004 (2020).
38
UNEP/CCAC, “Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions” (United Nations Environment Programme and Climate and Clean Air Coalition, 2021).
39
H. D. Matthews, T. L. Graham, S. Keverian, C. Lamontagne, D. Seto, T. J. Smith, National contributions to observed global warming. Environ. Res. Lett. 9, 014010 (2014).
40
D. Varon, J. McKeever, D. Jervis, J. D. Maasakkers, S. Pandey, S. Houweling, I. Aben, T. Scarpelli, D. J. Jacob, Satellite discovery of anomalously large methane point sources from oil/gas production. Geophys. Res. Lett. 46, 13507–13516 (2019).
41
D. H. Cusworth, R. M. Duren, A. K. Thorpe, S. Pandey, J. D. Maasakkers, I. Aben, D. Jervis, D. J. Varon, D. J. Jacob, C. A. Randles, R. Gautam, M. Omara, G. W. Schade, P. E. Dennison, C. Frankenberg, D. Gordon, E. Lopinto, C. E. Miller, Multisatellite Imaging of a Gas Well Blowout Enables Quantification of Total Methane Emissions. Geophys. Res. Lett. 48, e2020GL090864 (2021).
42
D. J. Varon, D. Jervis, J. McKeever, I. Spence, D. Gains, D. J. Jacob, High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations. Atmos. Meas. Tech. 14, 2771–2785 (2021).
43
A. M. Propp, J. S. Benmergui, A. J. Turner, S. C. Wofsy, “MethaneSat: Detecting Methane Emissions in the Barnett Shale Region” in AGU Fall Meeting Abstracts vol. 2017 A32D-06 (2017).
44
EPA, “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019” (United States Environmental Protection Agency, 2021).
45
ESA, S5P Mission Performance Centre Methane [L2__CH4___] Readme. V01.04.00 (2020).
46
GDAL/OGR contributors. Geospatial Data Abstraction Software Library. https://gdal.org (2021).
47
A. Buades, B. Coll, J.-M. Morel, A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005).
48
A. M. Price-Whelan, B. M. Sipőcz, H. M. Günther, P. L. Lim, S. M. Crawford, S. Conseil, D. L. Shupe, M. W. Craig, N. Dencheva, A. Ginsburg, J. T. VanderPlas, L. D. Bradley, D. Pérez-Suárez, M. de Val-Borro, T. L. Aldcroft, K. L. Cruz, T. P. Robitaille, E. J. Tollerud, C. Ardelean, T. Babej, Y. P. Bach, M. Bachetti, A. V. Bakanov, S. P. Bamford, G. Barentsen, P. Barmby, A. Baumbach, K. L. Berry, F. Biscani, M. Boquien, K. A. Bostroem, L. G. Bouma, G. B. Brammer, E. M. Bray, H. Breytenbach, H. Buddelmeijer, D. J. Burke, G. Calderone, J. L. C. Rodríguez, M. Cara, J. V. M. Cardoso, S. Cheedella, Y. Copin, L. Corrales, D. Crichton, D. D’Avella, C. Deil, É. Depagne, J. P. Dietrich, A. Donath, M. Droettboom, N. Earl, T. Erben, S. Fabbro, L. A. Ferreira, T. Finethy, R. T. Fox, L. H. Garrison, S. L. J. Gibbons, D. A. Goldstein, R. Gommers, J. P. Greco, P. Greenfield, A. M. Groener, F. Grollier, A. Hagen, P. Hirst, D. Homeier, A. J. Horton, G. Hosseinzadeh, L. Hu, J. S. Hunkeler, Ž. Ivezić, A. Jain, T. Jenness, G. Kanarek, S. Kendrew, N. S. Kern, W. E. Kerzendorf, A. Khvalko, J. King, D. Kirkby, A. M. Kulkarni, A. Kumar, A. Lee, D. Lenz, S. P. Littlefair, Z. Ma, D. M. Macleod, M. Mastropietro, C. McCully, S. Montagnac, B. M. Morris, M. Mueller, S. J. Mumford, D. Muna, N. A. Murphy, S. Nelson, G. H. Nguyen, J. P. Ninan, M. Nöthe, S. Ogaz, S. Oh, J. K. Parejko, N. Parley, S. Pascual, R. Patil, A. A. Patil, A. L. Plunkett, J. X. Prochaska, T. Rastogi, V. R. Janga, J. Sabater, P. Sakurikar, M. Seifert, L. E. Sherbert, H. Sherwood-Taylor, A. Y. Shih, J. Sick, M. T. Silbiger, S. Singanamalla, L. P. Singer, P. H. Sladen, K. A. Sooley, S. Sornarajah, O. Streicher, P. Teuben, S. W. Thomas, G. R. Tremblay, J. E. H. Turner, V. Terrón, M. H. Kerkwijk, A. de la Vega, L. L. Watkins, B. A. Weaver, J. B. Whitmore, J. Woillez, V. Zabalza, The Astropy project: Building an open-science project and status of the v2. 0 core package. Astron. J. 156, 123 (2018).
49
S. Beucher, The watershed transformation applied to image segmentation. Scanning Microsc. 1992, 299–314 (1992).
50
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, N. Kobe, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine Learning in Python. arXiv:1201.0490v4 [cs.LG] (2018).
51
J. M. Hilbe, Negative Binomial Regression. (Cambridge Univ. Press, 2011).
52
J. H. Williams, Quantifying Measurement (Morgan & Claypool Publishers, 2016).
(0)eLetters
eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.
Log In to Submit a ResponseNo eLetters have been published for this article yet.
Information & Authors
Information
Published In

Science
Volume 375 | Issue 6580
4 February 2022
4 February 2022
Copyright
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
This is an article distributed under the terms of the Science Journals Default License.
Submission history
Received: 17 May 2021
Accepted: 17 December 2021
Published in print: 4 February 2022
Acknowledgments
The authors thank A. Rostand, J. Bastin, C. Lelong, O. Dhobb, and S. B. Arous from Kayrros Inc. for fruitful discussions.
Funding: This research was supported by CNRS Make Our Planet Great Again French program CIUDAD project (to T.L. and P.C.); NASA GISS grant 80NSSC19M0138 (to D.S.); ANR Investissements d’avenir program grant PRAIRIE: ANR-19-P3IA-0001 (to A.A.); European Space Agency ESTEC contract (4000134070/21/NL/MM/gm) (to A.A. and T.L.); NASA Carbon Monitoring System (CMS) program (to R.D. and D.C.); and the High Tide Foundation and NASA Jet Propulsion Laboratory (to R.D.)
Author contributions: Conceptualization: T.L., C.G., M.M., A.A., D.S., and P.C. Methodology: T.L., C.G., M.M., A.A., R.D., D.C., D.S., and P.C. Visualization: C.G. and M.M. Writing: T.L., C.G., M.M., A.A., R.D., D.C., D.S., and P.C.
Competing interests: T.L. and P.C. have consulting fees and stock options from Kayrros. D.S. is also affiliated with the Porter School of the Environment and Earth Sciences (Tel Aviv, Israel) and the Climate and Clean Air Coalition (Paris, France). The other authors declare that they have no competing interests.
Data and materials availability: The HYSPLIT model (v4.2.0; 2019) was developed by the Air Resources Laboratory at NOAA and is available from www.arl.noaa.gov/hysplit/. TROPOMI data (S5P L2 CH4 OFFLINE) are available every day from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). The meteorological reanalysis data used for the simulation of the plumes in HYSPLIT are available from the Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home, from the Global Forecast System (GFS), Environmental Modeling Center, National Centers for Environmental Prediction (National Weather Service, NOAA, U.S. Department of Commerce, NCEI DSI 6182, gov.noaa.ncdc:C00634); and from the Global Data Assimilation System (GDAS), Environmental Modeling Center, National Centers for Environmental Prediction (National Weather Service, NOAA, U.S. Department of Commerce, NCEI DSI 6172, gov.noaa.ncdc:C00379). Data related to mapping and infrastructures are available from the GDAL/OGR contributors (2021), GDAL/OGR Geospatial Data Abstraction software Library (Open Source Geospatial Foundation, https://gdal.org), from ESRI. "World Imagery" [basemap]. Scale ~1:591M to ~1:72k. "World Imagery Map" (April 2021), the Oil and Gas Infrastructure (http://ww12.oilandgasinfrastructure.com/), and the Global Energy Monitor for coal mine activity and location data (https://globalenergymonitor.org/projects/global-coal-mine-tracker/tracker-map/). The locations, magnitudes, and dates of the ultra-emitters from oil and gas activities over the period 2019 to 2020 are publicly available at www.kayrros.com/methane-watch/.
Authors
Funding Information
National Aeronautics and Space Administration: 80NSSC19M0138
Goddard Institute for Space Studies: 80NSSC19M0138
European Space Agency: 4000134070/21/NL/MM
European Space Agency ESTEC: 4000134070/21/NL/MM
Agence Nationale Pour La Recherche: ANR-19-P3IA-0001
High Tide Foundation
Metrics & Citations
Metrics
Article Usage
Altmetrics
Citations
Export citation
Select the format you want to export the citation of this publication.
Cited by
- Chasing after methane’s ultra-emitters, Science, 375, 6580, (490-491), (2022)./doi/10.1126/science.abm1676
- Inefficient and unlit natural gas flares both emit large quantities of methane, Science, 377, 6614, (1566-1571), (2022)./doi/10.1126/science.abq0385
- Global Tracking and Quantification of Oil and Gas Methane Emissions from Recurrent Sentinel-2 Imagery , Environmental Science & Technology, 56, 14, (10517-10529), (2022).https://doi.org/10.1021/acs.est.1c08575
- Monitoring Methane Emissions from Oil and Gas Operations, PRX Energy, 1, 1, (2022).https://doi.org/10.1103/PRXEnergy.1.017001
- Critical method needs in measuring greenhouse gas fluxes, Environmental Research Letters, 17, 10, (104009), (2022).https://doi.org/10.1088/1748-9326/ac8fa9
- Locating and Quantifying Methane Emissions by Inverse Analysis of Path-Integrated Concentration Data Using a Markov-Chain Monte Carlo Approach, ACS Earth and Space Chemistry, 6, 9, (2190-2198), (2022).https://doi.org/10.1021/acsearthspacechem.2c00093
- Monitoring methane emissions from oil and gas operations ‡ , Optics Express, 30, 14, (24326), (2022).https://doi.org/10.1364/OE.464421
- Climate Change Action Alights on Satellite Detection of Methane, Engineering, (2022).https://doi.org/10.1016/j.eng.2022.07.003
- Satellites Detect a Methane Ultra-emission Event from an Offshore Platform in the Gulf of Mexico, Environmental Science & Technology Letters, 9, 6, (520-525), (2022).https://doi.org/10.1021/acs.estlett.2c00225
- Highly Stable Doped Barium Niobate Based Electrocatalysts for Effective Electrochemical Coupling of Methane to Ethylene, Advanced Materials Interfaces, 9, 27, (2200796), (2022).https://doi.org/10.1002/admi.202200796
- See more
Loading...
View Options
Check Access
Log in to view the full text
AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.
- Become a AAAS Member
- Activate your AAAS ID
- Purchase Access to Other Journals in the Science Family
- Account Help
Log in via OpenAthens.
Log in via Shibboleth.
More options
Purchase digital access to this article
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.








