Microwave-assisted preparation of yeast cells for ultrastructural analysis by electron microscopy

Vol. 11, 2024

Cover: Stacked microscopic image of the radiolarian Anthocyrtium hispidum Haeckel (magnification 400x), found in Barbados and aged approximately 32-35 million years (late Eocene - early Oligocene). Radiolarians (Polycystinea) are microplanktonic, open ocean protozoa characterized by a delicate skeleton of opaline silica or strontium sulfate and classed into the phylum Retaria. Specimen prepared by Andreas Drews, image by Picturepest and retrieved from Flickr; image modified by MIC. The cover is published under the Creative Commons Attribution (CC BY) license.

Microwave-assisted preparation of yeast cells for ultrastructural analysis by electron microscopy

Microwave-assisted preparation of yeast cells for ultrastructural analysis by electron microscopy

Moritz Mayera, Christina Schuga, Stefan Geimer, Till Klecker and Benedikt Westermann

Budding yeast Saccharomyces cerevisiae is widely used as a model organism to study the biogenesis and architecture of organellar membranes, which can be visualized by transmission electron microscopy (TEM).

Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms

Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms

Shweta Sinha1, Shifu Aggarwal2,3 and Durg Vijai Singh1

This review aims to elucidate the complex relationship between efflux pumps, antibiotic resistance and biofilm formation in S. aureus with the aim to aid in the development of potential therapeutic targets for combating S. aureus infections, especially those associated with biofilms.

A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines

A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines

Claudia Vanetti1, Irma Saulle1,2, Valentina Artusa1,2, Claudia Moscheni1, Gioia Cappelletti1, Silvia Zecchini1, Sergio Strizzi1, Micaela Garziano1,2, Claudio Fenizia1,2, Antonella Tosoni1, Martina Broggiato1, Pasquale Ogno1, Manuela Nebuloni1, Mario Clerici2,3, Daria Trabattoni1, Fiona Limanaqi1 and Mara Biasin1

Given the common tropism of SARS-CoV-2 and RSV, and the unclear consequences of their mutual influence, we developed an in vitro lung epithelial cell model to study the molecular mechanisms and cellular pathways modulated in viral co-infection.

RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis

RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis

Ronnie L. Fulton, Bryce R. Sawyer and Diana M Downs

This study solidifies the established role of RidA in removing 2AA, while also presenting evidence for a role of RidA in enhancing flux towards isoleucine biosynthesis in E. coli. Overall, these data emphasize that metabolic networks can generate distinct responses to perturbation, even when the individual components are conserved.

Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis

Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis

Yongqiang Yang1,a, Philipp Hartmann2,3,a and Bernd Schnabl1,4

This study aimed to investigate the significance of fecal gelatinase on clinical outcomes in patients with alcohol-associated hepatitis. In conclusion, in our cohort, fecal gelatinase does not predict mortality and does not indicate higher disease severity in patients with alcohol-associated hepatitis.

Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?

Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?

Eun-Gyu No, Heidi M Blank and Michael Polymenis

Proteins are the principal macromolecular constituent of proliferating cells, and protein synthesis is viewed as a primary metric of cell growth. While there are celebrated examples of proteins whose levels are periodic in the cell cycle (e.g., cyclins), the concentration of most proteins was not thought to change in the cell cycle, but some recent results challenge this notion. The ‘bulk’ protein is the focus of this article, specifically the rate of its synthesis, in the budding yeast Saccharomyces cerevisiae.

Direct detection of stringent alarmones (pp)pGpp using malachite green

Direct detection of stringent alarmones (pp)pGpp using malachite green

Muriel Schicketanz1, Magdalena Petrová2, Dominik Rejman2, Margherita Sosio3, Stefano Donadio3 and Yong Everett Zhang1

In this study, we demonstrate the surprising discovery of a commercially available, low-cost malachite green (MG) detection kit, originally designed for orthophosphate (Pi) detection, for detecting (p)ppGpp and its analogues, especially pGpp

Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts

Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts

Lajos Acs-Szabo, Laszlo-Attila Papp and Ida Miklos

Here we collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.

Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis

Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis

Yen-Han Tseng1,2, Sheng-Wei Pan1,2,3, Jhong-Ru Huang2,4, Chang-Ching Lee1, Jung-Jyh Hung2,5, Po-Kuei Hsu2,5, Nien-Jung Chen6, Wei-Juin Su2,7, Yuh-Min Chen1,2 and Jia-Yih Feng1,2,8

The PD-1/PD-L1 pathway plays a pivotal role in T cell activity and is involved in the pathophysiology of tuberculosis. Here we show that PD-L1 expression is increased in patients with active tuberculosis and is correlated with treatment outcomes.

Next
Microwave-assisted preparation of yeast cells for ultrastructural analysis by electron microscopy

Microwave-assisted preparation of yeast cells for ultrastructural analysis by electron microscopy

Moritz Mayera, Christina Schuga, Stefan Geimer, Till Klecker and Benedikt Westermann

Budding yeast Saccharomyces cerevisiae is widely used as a model organism to study the biogenesis and architecture of organellar membranes, which can be visualized by transmission electron microscopy (TEM).

Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms

Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms

Shweta Sinha1, Shifu Aggarwal2,3 and Durg Vijai Singh1

This review aims to elucidate the complex relationship between efflux pumps, antibiotic resistance and biofilm formation in S. aureus with the aim to aid in the development of potential therapeutic targets for combating S. aureus infections, especially those associated with biofilms.

A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines

A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines

Claudia Vanetti1, Irma Saulle1,2, Valentina Artusa1,2, Claudia Moscheni1, Gioia Cappelletti1, Silvia Zecchini1, Sergio Strizzi1, Micaela Garziano1,2, Claudio Fenizia1,2, Antonella Tosoni1, Martina Broggiato1, Pasquale Ogno1, Manuela Nebuloni1, Mario Clerici2,3, Daria Trabattoni1, Fiona Limanaqi1 and Mara Biasin1

Given the common tropism of SARS-CoV-2 and RSV, and the unclear consequences of their mutual influence, we developed an in vitro lung epithelial cell model to study the molecular mechanisms and cellular pathways modulated in viral co-infection.

RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis

RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis

Ronnie L. Fulton, Bryce R. Sawyer and Diana M Downs

This study solidifies the established role of RidA in removing 2AA, while also presenting evidence for a role of RidA in enhancing flux towards isoleucine biosynthesis in E. coli. Overall, these data emphasize that metabolic networks can generate distinct responses to perturbation, even when the individual components are conserved.

Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis

Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis

Yongqiang Yang1,a, Philipp Hartmann2,3,a and Bernd Schnabl1,4

This study aimed to investigate the significance of fecal gelatinase on clinical outcomes in patients with alcohol-associated hepatitis. In conclusion, in our cohort, fecal gelatinase does not predict mortality and does not indicate higher disease severity in patients with alcohol-associated hepatitis.

Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?

Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?

Eun-Gyu No, Heidi M Blank and Michael Polymenis

Proteins are the principal macromolecular constituent of proliferating cells, and protein synthesis is viewed as a primary metric of cell growth. While there are celebrated examples of proteins whose levels are periodic in the cell cycle (e.g., cyclins), the concentration of most proteins was not thought to change in the cell cycle, but some recent results challenge this notion. The ‘bulk’ protein is the focus of this article, specifically the rate of its synthesis, in the budding yeast Saccharomyces cerevisiae.

Next
Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms

Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms

Shweta Sinha1, Shifu Aggarwal2,3 and Durg Vijai Singh1

This review aims to elucidate the complex relationship between efflux pumps, antibiotic resistance and biofilm formation in S. aureus with the aim to aid in the development of potential therapeutic targets for combating S. aureus infections, especially those associated with biofilms.

Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts

Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts

Lajos Acs-Szabo, Laszlo-Attila Papp and Ida Miklos

Here we collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.

Characterising glycosaminoglycans in human breastmilk and their potential role in infant health

Characterising glycosaminoglycans in human breastmilk and their potential role in infant health

Melissa Greenwood1,2, Patricia Murciano-Martínez3, Janet Berrington4, Sabine L Flitsch5, Sean Austin2 and Christopher Stewart1

Glycosaminoglycans are bioactive components present in breast milk and play a potential key role in determining infant health yet are overlooked by many contemporary studies. This review explores their relevance, use and characterisation techniques.

Neutralizing the threat: harnessing broadly neutralizing antibodies against HIV-1 for treatment and prevention

Neutralizing the threat: harnessing broadly neutralizing antibodies against HIV-1 for treatment and prevention

Juan C Becerra1, Lauren Hitchcock1, Khoa Vu1 and Johannes S Gach1

This review provides an overview of the advancements in HIV- 1-specific broadly neutralizing antibodies and discusses the insights gathered from recent clinical trials regarding their application in treating and preventing HIV-1 infection.

From microbes to medicine: harnessing the gut microbiota to combat prostate cancer

From microbes to medicine: harnessing the gut microbiota to combat prostate cancer

Anjali Yadav1, Meenakshi Kaushik1, Prabhakar Tiwari1 and Rima Dada1

The gut microbiome (GM) has been identified as a crucial factor in the development and progression of various diseases, including cancer. This review highlights the important role that the GM may play in the development and progression of prostate cancer, through its influence on chronic inflammation, immune modulation, and other pathogenic mechanisms.

The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress

The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress

Fiorella Galello1, Mariana Bermúdez-Moretti1, María Clara Ortolá Martínez1, Silvia Rossi1 and Paula Portela1

During industrial fermentation yeast strains are exposed to fluctuations in oxygen concentration, osmotic pressure, pH, ethanol concentration, nutrient availability and temperature. The scope of this review is to outline the advancement of knowledge about the cAMP-PKA signalling and the crosstalk of this pathway with the CWI and HOG-MAPK cascades in response to the environmental challenges heat and hyperosmotic stress.

Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?

Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?

Eun-Gyu No, Heidi M Blank and Michael Polymenis

Proteins are the principal macromolecular constituent of proliferating cells, and protein synthesis is viewed as a primary metric of cell growth. While there are celebrated examples of proteins whose levels are periodic in the cell cycle (e.g., cyclins), the concentration of most proteins was not thought to change in the cell cycle, but some recent results challenge this notion. The ‘bulk’ protein is the focus of this article, specifically the rate of its synthesis, in the budding yeast Saccharomyces cerevisiae.